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Abstract

In recent years, the nuclear norm minimization (NNM) as a convex relaxation of the

rank minimization has attracted great research interest. By assigning different weights

to singular values, the weighted nuclear norm minimization (WNNM) has been utilized

in many applications. However, most of the work on WNNM is combined with the l2-

data-fidelity term, which is under additive Gaussian noise assumption. In this paper,

we introduce the L1-WNNM model, which incorporates the l1-data-fidelity term and the

regularization from WNNM. We apply the alternating direction method of multipliers

(ADMM) to solve the non-convex minimization problem in this model. We exploit the low

rank prior on the patch matrices extracted based on the image non-local self-similarity and

apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse

noise. Numerical results show that our method can effectively remove impulse noise.
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1. Introduction

With the rapid development of technologies in image processing, many effective image de-

noising methods have been proposed based on the low rank matrix approximation (LRMA)
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that aims to restore a low rank matrix from its noisy or incomplete observation, e.g., in [1–3].

Generally, LRMA methods can be sorted into two categories: the nuclear norm minimization

(NNM) methods, see [4–7], and the low rank matrix factorization (LRMF) methods, see [1,2,8].

In this paper, we focus on the first type. The NNM methods aim to seek a low rank solution by

minimizing the nuclear norm and the work in [3] shows that many NNM-based problems can

be solved via the nuclear norm proximal (NNP) that is defined as

X̂ = arg min
X∈Rm×n

1

2
‖X − Y ‖2F + λ‖X‖∗, (1.1)

where Y ∈ R
m×n denotes the given observation, ‖ · ‖F denotes the Frobenius norm, ‖X‖∗ =∑l

i=1 σi(X) is the nuclear norm of X with σi(X) as the i-th largest singular value of X ,

l = min(m,n), and λ > 0 is the regularization parameter. According to the work in [9], X̂

defined in (1.1) has a closed form, which can be obtained by using a soft-thresholding operation

on the singular values of the observation matrix Y , that is,

X̂ = proxλ‖·‖∗
(Y ) = UDλ(Σ)V

T ,

where Y = UΣV T denotes the singular value decomposition (SVD) of Y , U and V are, respec-

tively, m× l and n× l matrices with orthonormal columns, Σ is an l × l diagonal matrix with

the main diagonal [σ1(Y ), σ2(Y ), · · · , σl(Y )]T , and Dλ : Rm×n → R
m×n is an operator which

applies the soft-thresholding on each element with parameter λ. Since all elements in Σ are

non-negative, we have

(Dλ(Σ))i,i = max (Σi,i − λ, 0) .

The main limitation of NNM methods is that all singular values are weighted equally, which

may not be reasonable in some applications. As an example in image denoising, larger singular

values are usually associated with the major image patterns and textures, while smaller singular

values are usually associated with random noise. Thus, when we use NNM as regularization,

the larger singular values should be weighted less in order to preserve major data components,

while the smaller singular values should be weighted more in order to remove noise. In [10, 11]

the weight nuclear norm ‖ · ‖ω,∗ was proposed, which is defined as follows:

‖X‖ω,∗ =

l∑

i=1

ωiσi(X),

where ω = [ω1, ω2, . . . , ωl]
T with ωi ≥ 0 for all i = 1, . . . , l includes all weights. Combined with

the l2-data-fidelity term, a weighted nuclear norm minimization (WNNM) model was further

proposed as follows:

X̂ = arg min
X∈Rm×n

1

2
‖X − Y ‖2F + ‖X‖ω,∗. (1.2)

The minimization problem defined in (1.2) is also called the weighted nuclear norm proximal

(WNNP) problem. Its solution is a low rank approximation to Y and can be obtained efficiently

as shown in [10, 11].

For the the l2-data-fidelity term used in (1.2), it potentially assumes that the noise in Y

is additive white Gaussian noise. However, in many applications different data-fidelity terms

are considered to remove non-Gaussian noise [12–15]. For example, the l1-data-fidelity term

is usually used to remove impulse noise like the salt-and-pepper noise and the Laplace noise

[12,16–19]. In this paper, we combine the weighted nuclear norm with the l1-data-fidelity term


