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Abstract. In our prior work [10], neural networks with local converging inputs
(NNLCI) were introduced for solving one-dimensional conservation equations. Two
solutions of a conservation law in a converging sequence, computed from low-cost
numerical schemes, and in a local domain of dependence of the space-time location,
were used as the input to a neural network in order to predict a high-fidelity solution
at a given space-time location. In the present work, we extend the method to two-
dimensional conservation systems and introduce different solution techniques. Nu-
merical results demonstrate the validity and effectiveness of the NNLCI method for
application to multi-dimensional problems. In spite of low-cost smeared input data,
the NNLCI method is capable of accurately predicting shocks, contact discontinuities,
and the smooth region of the entire field. The NNLCI method is relatively easy to train
because of the use of local solvers. The computing time saving is between one and
two orders of magnitude compared with the corresponding high-fidelity schemes for
two-dimensional Riemann problems. The relative efficiency of the NNLCI method is
expected to be substantially greater for problems with higher spatial dimensions or
smooth solutions.
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1 Introduction

Artificial neural networks [9] are an important tool for computations in science and en-
gineering. Many approaches have recently been developed that incorporate artificial
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neural networks for solving partial differential equations. For example, Sirignano and
Spiliopoulos [29] introduced the Deep Galerkin Method to approximate the unknown
solution as a mapping from a space-time location to the solution value there with a deep
neural network, incorporating the finite difference residue error and initial and boundary
constraints in the loss function. E and Yu [7] introduced the Deep Ritz Method, which
incorporates the Ritz energy of a finite element method into the loss function. Raissi et
al. [24] developed physics-informed neural networks (PINN) by employing an automatic
differentiation [3] to define the residue error in the loss function. Much success has been
achieved in predicting a variety of flow problems with given governing equations, in-
cluding the Navier-Stokes system [23–26], hypersonic flow [18], electro-convection [21]
and others. In [20], the Rankine-Hugoniot jump conditions were added as a constraint to
the loss function of the neural network for solving the Riemann problems. In [14], a spe-
cially designed neural network was used to approximate the mapping from all known
information, such as initial and boundary values, to the unknown solution, and many
existing solutions have been used to train such a neural network. In [5, 19], finite expan-
sions of neural networks that can be trained off-line were introduced to form a mapping
from the initial value and a spatial location to a later high-fidelity solution at the same
location.

Neural networks have also been trained off-line to predict key parameters of a nu-
merical scheme. In [2, 6, 27], neural networks were used to detect discontinuities. An
appropriate slope limiter or artificial viscosity was then determined to treat discontinu-
ities using a local solution as the input. Another approach is to use a low-cost numerical
solution computed on a coarse grid as input to predict a high-fidelity solution [15, 22].

In our earlier work [10], a novel neural network method (NNLCI) was introduced to
solve conservation laws whose solutions may contain shock and contact discontinuities.
In NNLCI, local low-cost solutions are employed as the input to a neural network to
predict a high-fidelity solution at a given space-time location. To enable the neural net-
work to distinguish a numerically smeared discontinuity from a smooth solution with
large gradient in its input, the input is created by solving the conservation laws twice
in sequence, with approximate solutions of converging accuracy, with low-cost numer-
ical schemes and in a local domain of dependence of the space-time location. Because
a numerical discontinuity becomes increasingly steeper in a converging sequence in the
input, while a smooth solution does not, the neural network then can accurately identify
flow attributes in its input and make the correct prediction. Such inputs can be gener-
ated in different ways, including schemes with two different grids (with one grid coarser
than the other), with two different numerical diffusion coefficients on the same grid, or
with two schemes of different orders of accuracy on the same grid. All inputs and high-
fidelity solutions for all cases studied throughout the paper are computed by a first-order
or fourth-order numerical scheme, using Dual Intel Xeon Gold 6226 processors. The
NNLCI approach works effectively, not only for discontinuities, but also for smooth re-
gions of the solution. It has broad application to a wide variety of differential equations.
The computational cost is modest because it is a local post-processing-type solver, and
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