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Abstract. This paper develops the genuinely multidimensional HLL Riemann solver
for the two-dimensional special relativistic hydrodynamic equations on Cartesian
meshes and studies its physical-constraint-preserving (PCP) property. Based on the
resulting HLL solver, the first- and high-order accurate PCP finite volume schemes are
proposed. In the high-order scheme, the WENO reconstruction, the third-order accu-
rate strong-stability-preserving time discretizations and the PCP flux limiter are used.
Several numerical results are given to demonstrate the accuracy, performance and res-
olution of the shock waves and the genuinely multi-dimensional wave structures etc.
of our PCP finite volume schemes.
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1 Introduction

The paper is concerned with the genuinely multidimensional physical-constraints-
preserving (PCP) finite volume schemes for the special relativistic hydrodynamics
(RHD), which plays a crucial role in astrophysics, plasma physics, and nuclear physics
etc. This is particularly relevant in scenarios where fluids move at extremely high veloc-
ities close to the speed of light, necessitating the consideration of relativistic effects. In
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the (rest) laboratory frame, the two-dimensional (2D) special RHD equations governing
an ideal fluid flow can be expressed in the divergence form

∂U
∂t

+
2

∑
ℓ=1

∂Fℓ(U)

∂xℓ
=0, (1.1)

where the conservative vector U and the flux Fℓ are defined respectively by

U =(D,m,E)T, Fℓ=(Duℓ,muℓ+peℓ,(E+p)uℓ)
T , ℓ=1,2. (1.2)

Here D = ργ, m = Dhγu and E = Dhγ−p are the mass, momentum and total energy
relative to the laboratory frame respectively, p denotes the gas pressure, u = (u1,u2) is
the fluid velocity vector, eℓ is the row vector denoting the ℓ-th row of the unit matrix
of size 2, ρ is the rest-mass density, γ= 1/

√
1−|u|2 is the Lorentz factor, |u|2 = u2

1+u2
2,

h=1+e+ p
ρ is the specific enthalpy, and e is the specific internal energy. Note that natural

unit (i.e., the speed of light c= 1) has been used. The closure of the system (1.1) should
be accomplished by incorporating the equation of state (EOS), which has a general form
of p= p(ρ,e). For simplicity, this paper considers the EOS for the perfect gas, namely

p=(Γ−1)ρe, (1.3)

with the adiabatic index Γ∈(1,2]. Such restriction on Γ is reasonable under the compress-
ibility assumptions, and Γ is taken as 5/3 for the mildly relativistic case and 4/3 for the
ultra-relativistic case. In this case, for i=1,2, the Jacobian matrix Ai(U)= ∂Fi/∂U of the
system (1.1) has 4 real eigenvalues, listed in ascending order as follows

λ
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ui(1−c2
s )−csγ

−1
√

1−u2
i −c2

s (|u|2−u2
i )

1−c2
s |u|2

,

λ
(2)
i (U)=λ

(3)
i (U)=ui,

λ
(4)
i (U)=

ui(1−c2
s )+csγ
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i )
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,

where cs is the speed of sound expressed explicitly by

cs =
√

Γp/(ρh),

and satisfies

c2
s =

Γp
ρh

=
Γp

ρ+ p
Γ−1 +p

=
(Γ−1)Γp

(Γ−1)ρ+Γp
<Γ−1≤1= c.

Due to the relativistic effects, especially the appearance of the Lorentz factor, the
system (1.1) exhibits much stronger nonlinearity compared to the non-relativistic case,


