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A SHARP α-ROBUST L1 SCHEME ON GRADED

MESHES FOR TWO-DIMENSIONAL TIME TEMPERED

FRACTIONAL FOKKER-PLANCK EQUATION

CAN WANG, WEIHUA DENG∗ AND XIANGONG TANG

Abstract. In this paper, we are concerned with the numerical solution for the two-dimensional

time fractional Fokker-Planck equation with the tempered fractional derivative of order α. Al-
though some of its variants are considered in many recent numerical analysis works, there are still
some significant differences. Here we first provide the regularity estimates of the solution. Then a
modified L1 scheme inspired by the middle rectangle quadrature formula on graded meshes is em-

ployed to compensate for the singularity of the solution at t → 0+, while the five-point difference
scheme is used in space. Stability and convergence are proved in the sense of L∞ norm, getting a
sharp error estimate O(τmin{2−α,rα}) on graded meshes. Furthermore, the constant multipliers
in the analysis do not blow up as the order of Caputo fractional derivative α approaches the

classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and
convergence orders of the presented schemes.
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1. Introduction

Anomalous diffusion with mean squared displacement (MSD) ⟨x2(t)⟩ ≃ tα, in-
cluding subdiffusion and superdiffusion, is ubiquitously observed in a wide range
of complex systems [1, 2, 3], and its anomalous diffusion exponent differs from the
value α = 1 of Brownian motion. Subdiffusion with 0 < α < 1 often occurs in
cytoplasm of biological cells [4], amorphous semiconductors [5], or in hydrology [6].
Superdiffusion with α > 1 is observed in some active systems such as molecular
motor transport in cells [7] or in turbulence [8]. The continuous time random walk
(CTRW) is one of the central stochastic models for both regimes of anomalous dif-
fusion, which is based on two identically distributed random variables of the waiting
times τ between any two jumps and the single jump lengths x. In fact, based on
the fractional Fourier law and conservation law, the fractional diffusion equations
(FDEs) can be also derived.

In this paper, we consider the generalized two-dimensional time fractional Fokker-
Planck equation [9, 10]

∂

∂t
u(x, y, t) =

∂

∂t

∫ t

0

K(t− s, µ)∆u(x, y, s) ds,(1)

which is derived from a CTRW model with the tempered α-stable waiting times.

Here the Laplace operator ∆ = ∂2

∂x2 + ∂2

∂y2 is solved in a rectangular domain

Ω = (0, L1) × (0, L2) and the Laplace transform of the memory kernel is giv-

en by K̂(λ, µ) = 1
(λ+µ)α−µα with the tempering index µ > 0 and stability index

0 < α < 1. In fact, Ref. [10] indicates that the second moment of the CTRW model
corresponding to (1) is ⟨x2(t)⟩ ≃ tα as t→ 0, while ⟨x2(t)⟩ ≃ t as t→ ∞. We first
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transform Eq. (1) into an equivalent Eq. (A.1) (see Appendix A). Without loss
of generality, we consider Eq. (A.1) with a source term f(x, y, t). Then under ini-
tial condition and homogeneous Dirichlet boundary condition, we discuss the time
fractional Fokker-Planck initial-boundary value problem:

∂α,µt u(x, y, t)−∆u(x, y, t) = f(x, y, t), (x, y, t) ∈ Q := Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω̄,

(2)

where Ω is a bounded domain, Q̄ := Ω̄× [0, T ], and f and ϕ are given functions; the
time fractional derivative ∂α,µt u(x, y, t) is the tempered Caputo fractional derivative
of order α, defined by

∂α,µt u(x, y, t) =

∫ t

0

wα
µ(t− s)

∂

∂s
u(x, y, s) ds(3)

with

wα
µ(t) =

α

Γ(1− α)

∫ ∞

t

e−µss−1−α ds.(4)

Here Γ(λ) :=
∫∞
0
tλ−1e−t dt is the Gamma function. Clearly, when µ = 0, ∂α,µt u is

just the classical Caputo fractional derivative of order α.
However, since the nonlocal properties of fractional operators, it is more chal-

lenging or sometimes even impossible to obtain the analytical solutions of FDEs, or
the obtained analytical solutions are less practicable (expressed by the transcenden-
tal functions or infinite series). Efficiently solving FDEs naturally has always been
an urgent topic. So far there have been many works, including the finite difference
method, finite element method, spectral method, and so on [11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21]. In particular, for the fractional derivatives in Caputo sense, the
L1-type scheme [20, 21] and k-step backward difference formulae [15, 16, 22, 23]
on uniform meshes are two popular and predominant discretization techniques. To
the best of our knowledge, the smoothness of all the known data of (2) does not
imply smoothness of the solution u in the closed domain Q̄ [24, 25, 26]. In the
early research, most papers ignored the possible presence of an initial layer in the
solution at t = 0, and the corresponding convergence analyses make an unrealistic
assumption that u is smooth in the closed domain Q̄. Until later, the nonuniform
time meshes were successfully employed to compensate for the singularity of the
solution at t→ 0+ [28, 29, 30, 31], which are flexible and reasonably convenient for
practical implementation. Such graded meshes were originally used in the context of
Volterra integral equations with weakly singular kernels [32, 33]. In particular, the
L1 schemes on graded meshes for discretizing the fractional derivatives in Caputo
sense with the optimal rate of convergence O(τmin{2−α,rα}) have been detailedly
discussed in [17, 28]. However, it seems not easy to extend to the tempered Caputo
fractional derivative ∂α,µt u(x, y, t) in our Fokker-Planck equation (2) because the
kernel function wα

µ(t) is an improper integral. In this paper, a modified L1 scheme

is designed to discretize the tempered Caputo fractional derivative ∂α,µt u(x, y, t),
which seems to be the first time to be considered, and the classical five-point fi-
nite difference scheme is used to approximate ∆u. After verifying the regularity
of the solution to (2), a precise stability result and sharp α-robust error estimate
O(τmin{2−α,rα} + h2) are obtained.

The structure of the paper is as follows. In Section 2, the regularity of the so-
lution u of (2) is investigated and the bounds of those derivatives of u are derived,
which are needed for the subsequent numerical analyses. In Section 3, the kernel


