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Abstract. Fractional partial differential equations (FPDEs) can effectively represent
anomalous transport and nonlocal interactions. However, inherent uncertainties arise
naturally in real applications due to random forcing or unknown material properties.
Mathematical models considering nonlocal interactions with uncertainty quantifica-
tion can be formulated as stochastic fractional partial differential equations (SFPDEs).
There are many challenges in solving SFPDEs numerically, especially for long-time
integration since such problems are high-dimensional and nonlocal. Here, we com-
bine the bi-orthogonal (BO) method for representing stochastic processes with physics-
informed neural networks (PINNs) for solving partial differential equations to for-
mulate the bi-orthogonal PINN method (BO-fPINN) for solving time-dependent SF-
PDEs. Specifically, we introduce a deep neural network for the stochastic solution of
the time-dependent SFPDEs, and include the BO constraints in the loss function fol-
lowing a weak formulation. Since automatic differentiation is not currently applicable
to fractional derivatives, we employ discretization on a grid to compute the fractional
derivatives of the neural network output. The weak formulation loss function of the
BO-fPINN method can overcome some drawbacks of the BO methods and thus can be
used to solve SFPDEs with eigenvalue crossings. Moreover, the BO-fPINN method can
be used for inverse SFPDEs with the same framework and same computational com-
plexity as for forward problems. We demonstrate the effectiveness of the BO-fPINN
method for different benchmark problems. Specifically, we first consider an SFPDE
with eigenvalue crossing and obtain good results while the original BO method fails.
We then solve several forward and inverse problems governed by SFPDEs, including
problems with noisy initial conditions. We study the effect of the fractional order as
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well as the number of the BO modes on the accuracy of the BO-fPINN method. The re-
sults demonstrate the flexibility and efficiency of the proposed method, especially for
inverse problems. We also present a simple example of transfer learning (for the frac-
tional order) that can help in accelerating the training of BO-fPINN for SFPDEs. Taken
together, the simulation results show that the BO-fPINN method can be employed to
effectively solve time-dependent SFPDEs and may provide a reliable computational
strategy for real applications exhibiting anomalous transport.
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1 Introduction

Fractional partial differential equations (FPDEs) can effectively represent anomalous
transport and nonlocal interactions in engineering and medical fields, e.g., porous media,
viscoelasticity, non-Newtonian fluid mechanics, soft tissue mechanics, etc. [1–5]. How-
ever, simulating real-world applications requires modelers to consider many uncertain
factors, such as material properties, random forcing terms, experimental measurement
errors, and the complexity of geometric regions with random roughness. These uncertain
factors may have an important impact on the system evolution, especially in long-term
forecasting, and hence quantifying uncertainty is very important. Following a proba-
bility framework, the uncertainty is usually modeled as a random field [6], and there-
fore modeling nonlocal interactions with uncertainty requires the formulation of frac-
tional partial differential equation with random inputs. Although there have been some
achievements in the numerical solution of stochastic fractional partial differential equa-
tions (SFPDEs) [7–9], the design of reliable algorithms that can tackle high-dimensions
and long-term integration is still an open challenge in the context of solving efficiently
time-dependent stochastic fractional partial differential equations (SFPDEs).

Monte Carlo (MC) and Quasi Monte Carlo (QMC) methods are common methods for
solving differential equations with random inputs, with the statistical values (e.g., mean
and variance) of the random solutions obtained by numerically solving a set of corre-
sponding deterministic differential equations at sample points. However, such methods
have slow convergence speed and tax computational resources heavily for large complex
systems [10, 11]. In recent years, Polynomial Chaos (PC) has been widely used to solve
partial differential equations with random inputs, which can be regarded as a spectral
approximation method in random space. The basic idea is to first employ a Karhunen
Loève expansion of the random field to reduce the dimension of the infinite-dimensional
random inputs and represent them with a finite-dimensional series, and subsequently
construct a polynomial surrogate model of the random solution. The polynomial expan-
sion coefficients are solved by the stochastic Galerkin method or the stochastic collocation


