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Abstract

By combination of iteration methods with the partition of unity method (PUM), some

finite element parallel algorithms for the stationary incompressible magnetohydrodynamics

(MHD) with different physical parameters are presented and analyzed. These algorithms

are highly efficient. At first, a global solution is obtained on a coarse grid for all approaches

by one of the iteration methods. By parallelized residual schemes, local corrected solutions

are calculated on finer meshes with overlapping sub-domains. The subdomains can be

achieved flexibly by a class of PUM. The proposed algorithm is proved to be uniformly

stable and convergent. Finally, one numerical example is presented to confirm the theo-

retical findings.
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1. Introduction

The stationary incompressible MHD equations [1] in a Lipschitz polygon/polyhedron Ω ⊂
Rd (d = 2, 3) with homogeneous Dirichlet boundary conditions are described as

−R−1
e ∆u+ u · ∇u+∇p− Sccurl B×B = f , (1.1)

div u = 0, (1.2)

ScR
−1
emcurl curl B− Sccurl (u×B)−∇r = g, (1.3)

div B = 0, (1.4)

u|∂Ω = 0, B× n|∂Ω = 0, r|∂Ω = 0, (1.5)

where Re and Rem are the Reynolds numbers of hydrodynamic and magnetic, respectively, n is

the unit outward normal vector on ∂Ω, Sc is the coupling number of the two fields. u represents
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fluid velocity field, B magnetic field strength, p hydrodynamic pressure and r magnetic pseudo-

pressure. Let g be solenoidal.

The governing MHD model is strongly nonlinear because the classical equations of Maxwell

and Navier-Stokes are coupled. This physical system describes the relationship between in-

compressible flows with electrically conducting property and the existing magnetic field. It has

important applications in numerous areas of science, e.g., process metallurgy and MHD ion

propulsion, see [2, 3].

Recently, finite element methods (FEM) for numerically solving MHD equations have be-

come an attractive topic for the community of scientific computing. Based on the exact penalty

constraint idea on magnetic, a stabilized FE formulation was studied in [4]. Stabilized FEM mo-

tivated by residual-based stabilizations was investigated in [5]. Divergence-cleaning algorithm

in continuous FEM was given in [6]. A divergence-free discontinuous FEM was analyzed in [7].

To treat the nonlinear terms efficiently, three classical FE iterative methods were proposed

and the stability and convergence related to physical parameters and iterations were proved

by Dong et al. [8]. By using the Lagrange multiplier associated with the magnetic divergence

constraint, a double-saddle-point FE formulation was given and analyzed in [9], and a mixed

discontinuous Galerkin scheme of this version was proposed by Houston et al. [10]. The mixed

FEMs with exactly preserving mass conservation of hydrodynamics and Gauss law of magnetic

were studied in [11] and [12–15], respectively. Some robust solvers for finite element discrete

system was designed in [16–18]. As for the time-dependent MHD equations, the stabilized

nodal-based FEMs were proposed in [19], Euler semi-implicit fully discrete FE schemes were

analyzed by Prohl [20] and He [21], the Crank-Nicolson extrapolation fully discrete FE scheme

was analyzed by Dong and He [22].

It has been proven practically that two-level FEM [23, 24] is a high-efficiency technique to

solve partial differential equations numerically, since it can reduce the cost of computing. This

method has been applied to treat the nonlinear terms and coupled terms in the MHD problem

in [25–27]. According to the observation of the behavior of a FE solution, [28] proposed parallel

FEMs based on local algorithms. [28] obtained low frequencies component governing the global

properties of the solution by using coarse mesh, and then approximates high frequencies one by

solving the resulted local residual subproblems on several subdomains with the fine grids. This

numerical algorithm is of high performance for few communications between blocks. Thus, it

has been developed and extended to various problems, such as, Navier-Stokes equations [29–31],

MHD equations [32, 33], etc.

Inspired by the algorithm in [28] and two-level FEM with respect to different physical pa-

rameters for the stationary MHD [27], in this article, we mainly extend the recent work [34,35]

to some local and parallel FE iterative algorithms (LPFEIAs) related to different physical pa-

rameters (Explicit in Theorem 3.2) for problem (1.1)-(1.5). The extensions to the previous

studies [34, 35] are explained clearly before Theorem 3.12. According to different stable con-

ditions of three classical m-iteration methods, we combine FEM with different iterations on

a globally coarse mesh to obtain FE iterative solutions (um
H ,Bm

H , pmH , rmH ) first, then we correct

them by different linearized residual schemes in parallel on some local overlapping subdomains

Ωj to seek the correction solutions (uj
mh,B

j
mh, p

j
mh, r

j
mh), j = 1, . . . , J , where J is the number

of the subdomains, m is the iterative step and mesh sizes satisfy h (h ≪ H). Moreover, the

uniform stability and convergence of each algorithm is analyzed.

The paper is divided into 4 sections. The next section is devoted to giving some notation

preparation and providing some results of FEM for the problem (1.1)-(1.5). In Section 3, some


