
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 16, No. 1, pp. 1-23

DOI: 10.4208/aamm.OA-2021-0193
February 2024

A Hessian Recovery Based Linear Finite Element
Method for Molecular Beam Epitaxy Growth
Model with Slope Selection

Minqiang Xu1,2 and Qingsong Zou3,∗

1 College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023,
China
2 School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou,
Guangdong 510275, China
3 School of Computer Science and Engineering, and Guangdong Province Key Laboratory
of Computational Science, Sun Yat-Sen University, Guangzhou, Guangdong 510275,
China

Received 3 June 2021; Accepted (in revised version) 19 May 2022

Abstract. In this paper, we present a Hessian recovery based linear finite element
method to simulate the molecular beam epitaxy growth model with slope selection.
For the time discretization, we apply a first-order convex splitting method and second-
order Crank-Nicolson scheme. For the space discretization, we utilize the Hessian
recovery operator to approximate second-order derivatives of a C0 linear finite ele-
ment function and hence the weak formulation of the fourth-order differential oper-
ator can be discretized in the linear finite element space. The energy-decay property
of our proposed fully discrete schemes is rigorously proved. The robustness and the
optimal-order convergence of the proposed algorithm are numerically verified. In a
large spatial domain for a long period, we simulate coarsening dynamics, where 1/3-
power-law is observed.
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1 Introduction

In recent years, the molecular beam epitaxy (MBE) growth approach has become a pow-
erful tool for thin-film deposition of single crystal [15,43]. So MBE growth technique has
been widely applied in material science, especially in semi-conductor manufacture and
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nano-technology industry. In previous works, there are mainly three types of mathemat-
ical modelings to study dynamics of the MBE growth process: atomistic models [2, 19],
continuum models [23, 31, 42] and hybrid models [6, 14].

We are interested in the continuum model with slope selection introduced by Moldovan
and Golubovic [29]. It describes the evolution of the MBE growth with isotropic symme-
try current, of which the governing equation takes the form [22]:{

∂tu=−ε∆2u+∇·(|∇u|2∇u−∇u) in Ω×[0,T],
u(·,0)=u0(·) in Ω,

(1.1)

where Ω is a smooth domain, ε is a positive constant, and the unknown function u rep-
resents the epitaxy surface height of the thin film. Moreover, we suppose u satisfies a
certain periodic boundary condition or Neumann boundary conditions ∂nu|∂Ω = 0 and
∂n∆u|∂Ω = 0, where n is the outward normal on the boundary. The MBE equation (1.1)
can be derived via an L2-gradient flow of the effective free energy functional [11, 20]

E(u) :=
∫

Ω

(
ε

2
|∆u|2+ 1

4
(|∇u|2−1)2

)
dΩ, (1.2)

of which the first term represents the surface diffusion effect [11] and the second term de-
scribes the Ehrlich-Schwoebel effect [22]. Thanks to the flux free condition at the bound-
ary, it is trivial to show that the energy decay property

dE(u)
dt

=−‖ut‖2
0≤0, ∀t>0,

and the total mass conservation property

d
dt

∫
Ω

udΩ=0,

always hold for the solution of the MBE equation (1.1).
During the past several decades, the numerical solution for (1.1) (see e.g., [4, 6, 8–10,

12–14, 18, 21, 24, 25, 27, 28, 32–35, 37, 38, 41, 44, 47, 48, 51]) has been intensively investigated
based on variants of temporal discretization and spatial discretization techniques.

On temporal-discretization, two popular approaches can guarantee the energy decay
property of the numerical solution. The basic idea of the first approach is so-called convex
splitting which splits the nonlinear term to the convex part which will be treated implic-
itly and the concave part which will be treated explicitly, see [5, 41, 44, 47]. The uncondi-
tional energy decay property and the unique solvability of the numerical solution of this
approach could be easily derived. However, such methods lead to a nonlinear algebraic
system that requires high computational cost. The second approach is the so-called linear
stabilization approach which treats the nonlinear term only explicitly and guarantees the
energy stability by adding a linear artificial penalty term, see [38–40, 49]. Such a method


