A Novel Iterative Method to Find the Moore-Penrose Inverse of a Tensor with Einstein Product

Raziyeh Erfanifar ${ }^{1}$, Masoud Hajarian ${ }^{1, *}$ and Khosro Sayevand ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
${ }^{2}$ Faculty of Mathematics and Statistics, Malayer University, Malayer, Iran

Received 12 February 2023; Accepted (in revised version) 14 July 2023

Abstract

In this study, based on an iterative method to solve nonlinear equations, a third-order convergent iterative method to compute the Moore-Penrose inverse of a tensor with the Einstein product is presented and analyzed. Numerical comparisons of the proposed method with other methods show that the average number of iterations, number of the Einstein products, and CPU time of our method are considerably less than other methods. In some applications, partial and fractional differential equations that lead to sparse matrices are considered as prototypes. We use the iterates obtained by the method as a preconditioner, based on tensor form to solve the multilinear system $\mathcal{A} *_{N} \mathcal{X}=\mathcal{B}$. Finally, several practical numerical examples are also given to display the accuracy and efficiency of the new method. The presented results show that the proposed method is very robust for obtaining the Moore-Penrose inverse of tensors.

AMS subject classifications: 15A24, 65F10, 65F30
Key words: Tensor, iterative methods, Moore-Penrose inverse, Einstein product.

1. Introduction

Tensors occur in a wide variety of application areas such as document analysis, psychometrics, formulation an n-person noncooperative game, medical engineering, chemometrics, higher-order, and so on [5, 19-21, 26, 29, 34]. In this paper, we denote matrices with uppercase letters A, B, \ldots, and tensors are signified by calligraphic font $\mathcal{A}, \mathcal{B}, \ldots$. Suppose that N is a positive integer, and an N-th order tensor $\mathcal{A}=$ $\left(a_{i_{1} \ldots i_{N}}\right)_{1 \leq i_{j} \leq P_{j}}$ is a multidimensional array with $P_{1} \ldots P_{N}$ entries. The tensor \mathcal{A} is called a hyper-matrix, or tensors are higher-order generalizations of vectors and matrices. Let $\mathbb{R}^{P_{1} \times \cdots \times P_{N}}$ show the space of N-th order tensors.

[^0]In the following, we give some definitions of tensors and the Einstein product.
Definition 1.1 ([6]). Let N and M be positive integers, also $\mathcal{A} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times Q_{1} \times \cdots \times Q_{N}}$ and $\mathcal{B} \in \mathbb{R}^{Q_{1} \times \cdots \times Q_{N} \times K_{1} \times \cdots \times K_{M}}$. Then the Einstein product of \mathcal{A} and \mathcal{B} is defined as follows:

$$
\begin{equation*}
\left(\mathcal{A} *_{N} \mathcal{B}\right)_{p_{1} \ldots p_{N} k_{1} \ldots k_{M}}=\sum_{q_{N}}^{Q_{N}} \cdots \sum_{q_{1}}^{Q_{1}} a_{p_{1} \ldots p_{N} q_{1} \ldots q_{N}} b_{q_{1} \ldots q_{N} k_{1} \ldots k_{M}} \tag{1.1}
\end{equation*}
$$

therefore, $\mathcal{A} *_{N} \mathcal{B} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times K_{1} \times \cdots \times K_{M}}$.
Note that if $N=M=1$, the Einstein product reduces to the standard matrix multiplication.
Definition 1.2. Inner product of two tensors $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times Q_{1} \times \cdots \times Q_{N}}$ is defined as follows:

$$
\langle\mathcal{X}, \mathcal{Y}\rangle=\sum_{q_{N}=1}^{Q_{N}} \cdots \sum_{q_{1}=1}^{Q_{1}} \sum_{p_{N}=1}^{P_{N}} \cdots \sum_{p_{1}=1}^{P_{1}} x_{p_{1} \cdots p_{N} q_{1} \cdots q_{N}} y_{q_{1} \cdots q_{N} p_{1} \cdots p_{N}} .
$$

Definition 1.3 ([6]). Let $\mathcal{A} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times Q_{1} \times \cdots \times Q_{N}}$ be a tensor, then transpose and Frobenius norm of the tensor \mathcal{A} are defined as follows:

$$
\left(\mathcal{A}^{T}\right)_{p_{1} \ldots p_{N} q_{1} \ldots q_{N}}=(\mathcal{A})_{q_{1} \ldots q_{N} p_{1} \ldots p_{N}},
$$

and

$$
\|\mathcal{A}\|=\sqrt{\langle\mathcal{A}, \mathcal{A}\rangle}=\sqrt{\sum_{q_{N}=1}^{Q_{N}} \cdots \sum_{q_{1}=1}^{Q_{1}} \sum_{p_{N}=1}^{P_{N}} \cdots \sum_{p_{1}=1}^{P_{1}}\left|a_{q_{1} \ldots q_{N} p_{1} \ldots p_{N}}\right|^{2}}
$$

respectively.
Definition 1.4 ([6]). A tensor $\mathcal{A} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times P_{1} \times \cdots \times P_{N}}$ is called diagonal if for all $p_{l} \neq$ $q_{l}, l=1, \ldots, N$ we have $a_{p_{1} \ldots p_{N} q_{1} \ldots q_{N}}=0$. A diagonal tensor $\mathcal{I} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times P_{1} \times \cdots \times P_{N}}$ is identity if $i_{p_{1} \ldots p_{N} q_{1} \ldots q_{N}}=\Pi_{l=1}^{N} \delta_{p l q}$, where

$$
\delta_{p_{l} q_{l}}= \begin{cases}1, & p_{l}=q_{l}, \\ 0, & p_{l} \neq q_{l} .\end{cases}
$$

Definition 1.5. Suppose that $\mathcal{A} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times P_{1} \times \cdots \times P_{N}}$, then $\mathcal{B} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times P_{1} \times \cdots \times P_{N}}$ is said inverse of \mathcal{A} with the Einstein product if

$$
\mathcal{A} *_{N} \mathcal{B}=\mathcal{I},
$$

therefore $\mathcal{A}^{-1}=\mathcal{B}$.
Proposition 1.1 ([38]). If $\mathcal{A} \in \mathbb{R}^{P_{1} \times \cdots \times P_{N} \times Q_{1} \times \cdots \times Q_{N}}$ and $\mathcal{B} \in \mathbb{R}^{Q_{1} \times \cdots \times Q_{N} \times K_{1} \times \cdots \times K_{M}}$, then

$$
\left(\mathcal{A} *_{N} \mathcal{B}\right)^{T}=\mathcal{B}^{T} *_{N} \mathcal{A}^{T}, \quad \mathcal{I}_{N} *_{N} \mathcal{B}=\mathcal{B}, \quad \mathcal{B} *_{M} \mathcal{I}_{M}=\mathcal{B}
$$

where $\mathcal{I}_{N} \in \mathbb{R}^{Q_{1} \times \cdots \times Q_{N} \times Q_{1} \times \cdots \times Q_{N}}$ and $\mathcal{I}_{M} \in \mathbb{R}^{K_{1} \times \cdots \times K_{M} \times K_{1} \times \cdots \times K_{M}}$, are identity tensors.

[^0]: *Corresponding author. Email addresses: r_erfanifar@sbu.ac.ir (R. Erfanifar), m_hajarian@sbu.ac.ir (M. Hajarian), ksayehvand@malayeru.ac.ir (K. Sayevand)

