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Abstract. In this paper, we propose a method for solving semilinear elliptical equa-
tions using a ResNet with ReLU2 activations. Firstly, we present a comprehensive

formulation based on the penalized variational form of the elliptical equations. We

then apply the Deep Ritz Method, which works for a wide range of equations. We
obtain an upper bound on the errors between the acquired solutions and the true

solutions in terms of the depth D, width W of the ReLU2 ResNet, and the num-
ber of training samples n. Our simulation results demonstrate that our method can

effectively overcome the curse of dimensionality and validate the theoretical results.
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1. Introduction

Solving semilinear partial differential equations in high dimensional space is a chal-

lenging problem in physics and engineering with applications in hydromechanics (Nav-

ier-Stokes equations, Burgers equations) [5,11,23], quantum mechanics (Gross Pitaev-

skii equations) [3], variational geometry (Plateaus equations) [13], and more. Tra-

ditional numerical methods such as finite element, finite difference, and finite vol-

ume encounter the curse of dimensionality, where the number of parameters expo-

nentially increases as the dimension grows, rendering these mesh-based methods im-
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practical. Recent attempts have been made to overcome this challenge, with one of

the most promising tools being deep neural networks (DNN). The approximability of

DNNs has been shown to overcome the curse of dimensionality, leading to the de-

velopment of related methods [16, 38, 39], such as physics-informed neural networks

(PINNs) [10, 20, 21, 31–33], Deep Galerkin method (DGM) [9, 22, 26, 36], and weak

adversarial networks (WAN) [2,7,40].

The Deep Ritz method (DRM) is one of the most renowned approaches in the field

of elliptic equations, capable of solving both the equations and the eigenvalue prob-

lems [9, 12, 14, 17, 19, 25, 27, 28, 30]. In this article, we present its application in

nonlinear elliptic equations and provide a convergent analysis. To apply the method,

we identify the functional variation that corresponds to the PDEs, and then replace the

trial function with a deep neural network (DNN). We subsequently discretize it using

the Monte Carlo algorithm [18, 37] and solve the discretized variation to approximate

the solution. By following these steps, we can divide the error into two components:

the approximation error and the statistical error. To bound the statistical error, we need

to calculate the infinity norm of both the solution and its derivative [14,28]. However,

this requirement narrows down the method’s applicability. To address this issue, we

can use one of two methods. The first is to restrict the feasible parameter region of

DNN [27]. In this case, the statistical error can be easily estimated, as the Rademacher

complexity can be computed in the parameter space. However, the approximation er-

ror can be challenging to compute, especially for DNN with large depth. The second

method is the one we propose in this article. By directly bounding the W 1,∞ norm of

the neural networks, we estimate the Rademacher complexity in the function space,

and we can obtain the approximation error through the traditional mollifier technique.

The outline of this paper is as follows. In Section 2, we establish the primary prob-

lem of our article and introduce the notation we use. In Section 3, we present the

variational loss of the problem and construct a simple error decomposition. The main

theorem of the article is presented in Section 4 before its proof, for ease of reading.

In Section 5, we provide numerical results to verify the effectiveness of the proposed

method. Finally, we conclude the main body of our article with a discussion in Sec-

tion 6. In Appendix A, we provide some lengthy proofs of the lemma in Section 4.3.

2. Preliminaries and notations

In this article, we consider the semilinear elliptic equation




−∆u+ f(u) = g in Ω,

u+
1

ε

∂u

∂n
= h on ∂Ω,

(2.1)

where ε ∈ (0,+∞]. The interval for ε includes the cases of Dirichlet boundary condition

(ε = +∞) and Robin boundary condition (ε ∈ (0,+∞)). We limit our equation to the

following assumption.


