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Abstract. In this work, we propose an explicit second order scheme for decoupled

mean-field forward backward stochastic differential equations with jumps. The sta-

bility and the rigorous error estimates are presented, which show that the proposed
scheme yields a second order rate of convergence, when the forward mean-field

stochastic differential equation is solved by the weak order 2.0 Itô-Taylor scheme.
Numerical experiments are carried out to verify the theoretical results.
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1. Introduction

Let (Ω,F ,F, P ) be a complete filtered probability space with F = {Ft}0≤t≤T be-

ing the filtration generated by the following two mutually independent stochastic pro-

cesses:

• The m-dimensional Brownian motion W = (Wt)0≤t≤T .

• The Poisson random measure {µ(A × [0, t]), A ∈ E , 0 ≤ t ≤ T} on E × [0, T ],
where E = R

q\{0} and E is its Borel field.

In this paper, we suppose that the Poisson measure µ has the intensity measure

ν(de, dt) = λ(de)dt = λF (de)dt,
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where λ(de) is a Lévy measure on (E, E) describing the average number of jumps per

unit of time, λ = λ(E) is the intensity of the measure µ and F is the distribution of the

jump size e. Here λ(de) is a σ-finite measure satisfying
∫

E

(

1 ∧ |e|2
)

λ(de) < +∞.

Moreover, we have the compensated Poisson random measure

µ̃(de, dt) = µ(de, dt) − λ(de)dt,

such that {µ̃(A× [0, t]) = (µ− ν)(A× [0, t])}0≤t≤T is a martingale for any A ∈ E .

The Poisson measure µ can generate a sequence of pairs (τi, ei), i = 1, 2, . . . , NT

with τi ∈ [0, T ], i = 1, 2, . . . , NT , representing the jump times of Nt and ei ∈ E, i =

1, 2, . . . , NT the corresponding jump sizes satisfying ei
iid∼ F . Here Nt = µ(E × [0, t]) is

a Poisson process with intensity λ, which counts the number of jumps of µ occurring in

[0, t]. For more details of the Poisson random measure and Lévy measure, the readers

are referred to [6,17].

We are interested in the following general mean-field forward backward stochastic

differential equations with jumps (MFBSDEJs for short) on (Ω,F ,F, P )
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(1.1)

where

Θ0,x
s =

(

X0,x
s , Y 0,x

s , Z0,x
s ,Γ0,x

s

)

with x = x0 and X0 being the initial values of mean-field forward stochastic differential

equations with jumps (MSDEJs). Here, Γ0,x
s is defined by

Γ0,x
s =

∫

E

U0,x
s (e)η(e)λ(de)

for a given function η : E → R satisfying supe∈E |η(e)| < +∞,

b : [0, T ]× R
d × R

d → R
d,

σ : [0, T ]× R
d ×R

d → R
d×m,

c : [0, T ]× R
d × R

d × E → R
d


