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Abstract. This study is concerned with numerical solutions of a Magneto-Thermo-
Elasticity (MTE) model via a combination of energy-conserving finite difference
method (FDM) with Richardson extrapolation methods (REMs). Firstly, by introduc-
ing two auxiliary functions and using second-order centered FDM and Crank-Nicolson
method to approximate spatial and temporal derivatives, respectively, a two-level
energy-conserving FDM is established for a MTE model. The priori estimation, solv-
ability, and convergence are derived rigorously by using the discrete energy method.
Secondly, to improve computational efficiency, a class of REMs are also designed by
constructing the symbolic expansion of numerical solutions. Finally, numerical results
confirm the efficiency of the proposed algorithms and the exactness of the theoretical
findings.
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1 Introduction

1.1 Mathematical model and related studies

Magneto-thermo-elasticity theories [1–21] have been fully studied in the past few decades
because of its important applications in various fields, such as micro electromechanical
systems, acoustics, geophysics. Traditional coupled thermo-elasticity theory, which is
established based on a parabolic heat equation, admits an infinite speed for the propa-
gation of thermal signals in elastic solids. However, this admission contradicts physical
facts, especially in problems concerned with thermal shocks (cf. [1]). The generalized
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theories, which involve a hyperbolic-type heat transport equations of showing finite ve-
locities of heat distributions, are confirmed by many experiments showing the actual
occurrence of wave-type heat transport in solids (cf. [11]). Thus, the generalized thermo-
elasticity theories have been proposed because they are more accurate and efficient than
traditional theories in simulating practical problems. In general, there are three kinds
of non-classical thermo-elasticity theories. One of non-classical thermo-elasticity theory
was developed by Lord and Shulman in 1967 (cf. [3]). The authors presented a wave-
form thermal equation by defining the term relaxation time and considering a new law
of heat conduction instead of Fourier’s law. In comparison with the classical theory,
the equation of energy was only changed in Lord-Shulman theory. The second gener-
alized theory is proposed by Green and Lindsay in 1972 (cf. [4]). The temperature rate
dependent on two variables of the relaxation times was considered, and two disparate
lag times in stress correlation and entropy expression were introduced. Comparing with
classical theory, the equations of energy and motion were both altered in Green-Lindsay
theory. The final non-classical theory was presented by Green and Naghdi (cf. [5–7]).
In Green-Naghdi theory, displacement-temperature-flux rate in Fourier’s law was used,
and the energy of thermal stream was not wasted. Green and Naghdi provided important
modifications in the constitutive equations that can describe a much wider class of heat
flow problem (cf. [5–7]). To satisfy various applications, there have been growing many
magneto-thermo-elasticity models with more general forms, such as phase-lag Green-
Naghdi models [15–18], fractional GN II thermoelasticity models [19] and Cattaneo-type
thermoelasticity [20]. Some detailed reviews about the classical and extended theories,
please refer to the references [8, 9, 21] and the related references therein.

Some analytical methods (cf. [12–14,22–24]), such as the generalized variational prin-
ciple, Laplace transform method, eigenfunction expansion method and energy method,
have been put forward to research the properties of analytical solutions for various
thermo-elasticity models. However, it is very difficult for us to obtain the analytical
solutions of the generalized models with arbitrary initial-boundary conditions. Fortu-
nately, a lot of numerical methods, such as, numerical integration methods [25–27], finite
element methods [28–31], boundary element method [32], collocation methods [33–36]
and finite difference methods [37–41], have been developed by scientists and engineers
for them. However, mathematical analyses including convergence, stability, posteriori
estimation, and energy conservation or dissipation, have not been studied for most of
them. Thus numerical results may unconvincing or unreliable. Meanwhile, these algo-
rithms stated above are not energy-conserving methods. Moreover, most of them are
three-level or more than three-level schemes. Thus, to start computation, numerical so-
lutions at initial time levels are solved by other schemes. This increases computational
cost and complexity. Worse still, to the best of our knowledge, little attention has been
paid on the numerical methods for MTE models which posses high-order accuracies in
both time and space. In this study, taking a G-N model for example, a Crank-Nicolson
energy-preserving FDM and corresponding REMs are devised. The current methods can
overcome the deficiencies stated above.


