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Abstract. In this paper, we consider two stabilized second-order semi-implicit finite
element methods for solving the Allen-Cahn and Cahn-Hilliard equations. Stabilized
semi-implicit schemes are used for temporal discretization, and the finite element
method is used for spatial discretization. It is shown that by adding a single linear
term that is of the same order with the truncation error in time, the proposed methods
are all unconditionally energy stable. Error estimates for the two schemes are also es-
tablished. Numerical examples are presented to confirm the accuracy, efficiency and
stability of the proposed methods.
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1 Introduction

We consider in this work the numerical approximation of the Allen-Cahn equation
∂u
∂t
−ε∆u+F′(u)=0, (x,t)∈Ω×(0,T],

u(x,0)=u0(x), x∈Ω,
u(x,t)=0, (x,t)∈∂Ω×(0,T],

(1.1)
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and the Cahn-Hilliard equation
∂u
∂t

+∆(ε∆u−F′(u))=0, (x,t)∈Ω×(0,T],

u(x,0)=u0(x), x∈Ω,
∂u
∂n

=
∂(ε∆u−F′(u))

∂n
=0, (x,t)∈∂Ω×(0,T].

(1.2)

Here Ω⊂Rd d=(1,2,3) is a bounded domain, ∂Ω denotes the Lipschitz boundary of Ω.
n denotes the unit outward normal vector of ∂Ω. T>0 is a fixed constant. The parameter
ε which models the effect of interfacial energy is small but always larger than zero. The
Ginzburg-Landau double well potential F(u)=(u2−1)2/4 is considered, and the function
u(x,t) is a distribution function of the concentration for one of the two metallic compo-
nents of the alloy. As we all know that the Allen-Cahn and Cahn-Hilliard equation can
be regarded as the gradient flow of the following Liapunov energy functional

E(u)=
∫

Ω

(ε

2
|∇u|2+F(u)

)
dx (1.3)

in L2-space and H−1-space, respectively. If we take the inner product for the first equation
in (1.1) with ut, we can obtain the following equality

(ut,ut)+ε(∇u,∇ut)+(u3,ut)−(u,ut)=0,

and it is easy to show that for the the Allen-Cahn equation (1.1),

dE(u(t))
dt

=
∫

Ω
ε∇u∇ut+(u3−u)utdx=−(ut,ut)≤0. (1.4)

Similarly, if we take the inner product for the first equation in (1.2) with−∆−1ut, we have

‖ut‖2
−1−(∇µ,∇µ)=0.

Here µ= ε∆u−F′(u), and the H−1 norm ‖·‖−1 is defined in the next section. Hence, we
could prove that for the Cahn-Hilliard equation (1.2),

dE(u(t))
dt

=
∫

Ω
ε∇u∇ut+(u3−u)utdx=−(∇µ,∇µ)=−‖ut‖2

−1≤0. (1.5)

Eqs. (1.4)-(1.5) indicate that the Allen-Cahn and Cahn-Hilliard equation possess energy-
decay property: the total energy is decreasing in time, and the following energy law
holds:

E(u(t2))≤E(u(t1)), ∀t1< t2∈ (0,T]. (1.6)

As two famous phase-field models, the Allen-Cahn equation originated from the work
by Allen and Cahn [1] in which a diffusive interfacial model is built to describe the phe-
nomenon of antiphase domain coarsening in a binary alloy. While the Cahn-Hilliard


