Bilinear Pseudo-Differential Operator and Its Commutator on Generalized Fractional Weighted Morrey Spaces

Guanghui Lu* and Shuangping Tao

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China

Received 6 June 2021; Accepted (in revised version) 15 November 2023

Abstract. The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_{σ} and its commutator $[b_1, b_2, T_{\sigma}]$ generated by T_{σ} and $b_1, b_2 \in$ BMO(\mathbb{R}^n) on generalized fractional weighted Morrey spaces $L^{p,\eta,\varphi}(\omega)$. Under assumption that a weight satisfies a certain condition, the authors prove that T_{σ} is bounded from products of spaces $L^{p_1,\eta_1,\varphi}(\omega_1) \times L^{p_2,\eta_2,\varphi}(\omega_2)$ into spaces $L^{p,\eta,\varphi}(\vec{\omega})$, where $\vec{\omega} = (\omega_1, \omega_2) \in A_{\vec{p}}, \vec{P} = (p_1, p_2), \eta = \eta_1 + \eta_2$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$ with $p_1, p_2 \in$ $(1,\infty)$. Furthermore, the authors show that the $[b_1, b_2, T_{\sigma}]$ is bounded from products of generalized fractional Morrey spaces $L^{p_1,\eta_1,\varphi}(\mathbb{R}^n) \times L^{p_2,\eta_2,\varphi}(\mathbb{R}^n)$ into $L^{p,\eta,\varphi}(\mathbb{R}^n)$. As corollaries, the boundedness of the T_{σ} and $[b_1, b_2, T_{\sigma}]$ on generalized weighted Morrey spaces $L^{p,\varphi}(\omega)$ and on generalized Morrey spaces $L^{p,\varphi}(\mathbb{R}^n)$ is also obtained.

Key Words: Generalized fractional weighted Morrey space, bilinear pseudo-differential operator, commutator, space $BMO(\mathbb{R}^n)$.

AMS Subject Classifications: 42B20, 42B25, 42B35

1 Introduction

In 1967, Hörmander first introduced the definition of a pseudo-differential operator (see [13]), that is, let $\sigma(x,\xi)$ be a smooth function defined on $\mathbb{R}^n \times \mathbb{R}^n$, then the pseudo-differential operator \widetilde{T}_{σ} is defined by

$$\widetilde{T}_{\sigma}(f)(x) = \int_{\mathbb{R}^n} \sigma(x,\xi) \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \quad \text{for } f \in \mathcal{S},$$
(1.1)

where \hat{f} represents the Fourier transform of f, and the smooth function σ belongs to the symbol classes $S_{\rho,\delta'}^m$, which consist of all σ with satisfying the differential inequality

 $|\partial_x^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)| \leq C_{\alpha,\beta}(1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}$

92

http://www.global-sci.org/ata/

©2024 Global-Science Press

^{*}Corresponding author. *Email addresses:* lghwmm1989@126.com (G. Lu), taosp@nwnu.edu.cn (S. Tao)

for multi-indices $\alpha, \beta \in \mathbb{N}^n$, where $m \in \mathbb{R}$ and $0 \le \rho, \delta \le 1$. Such operators not only generalize the definition of differential operators with variable coefficients, but also have a key application in PDE. Therefore, the study of the pseudo-differential operator \tilde{T}_{σ} is widely focused. For example, Calderón and Vaillancourt in [5] proved that \tilde{T}_{σ} is bounded on space $L^2(\mathbb{R}^n)$. In 1988, Cardery and Seeger obtained the boundedness of pseudodifferential operator \tilde{T}_{σ} on spaces L^p (see [4]). The more researches about the pseudodifferential operators \tilde{T}_{σ} on various of function spaces can be seen [1,2,10,11,14] and the references therein.

However, in 1975, Coifman and Meyer obtained the definition of bilinear pseudodifferential operators and their some properties (see [8]). Namely, let $m \in \mathbb{R}$ and $\rho, \delta \in$ [0,1]. A symbol in $BS^m_{\rho,\delta}$ is a smooth function $\sigma(x,\xi,\eta)$ defined on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ such that for all multi-indices $\alpha, \beta, \gamma \in \mathbb{N}^n$, the following inequality

$$|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\partial_{\eta}^{\gamma}\sigma(x,\xi,\eta)| \leq C_{\alpha,\beta,\gamma}(1+|\xi|+|\eta|)^{m-\rho(|\beta|+|\gamma|)+\delta|\alpha|}$$

holds. Respectively, the bilinear pseudo-differential operators T_{σ} associated with the above function $\sigma(x, \xi, \eta) \in BS_{o,\delta}^m$ is defined by

$$T_{\sigma}(f_1, f_2)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(x, \xi, \eta) \widehat{f_1}(\xi) \widehat{f_2}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta \quad \text{for} \quad f_1, f_2 \in \mathcal{S}.$$
(1.2)

In this paper, we will mainly consider the symbol $\sigma(x, \xi, \eta) \in BS_{1,0}^0$, that is,

$$\begin{aligned} &|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\partial_{\eta}^{\gamma}\sigma(x,\xi,\eta)|\\ \leq &C_{\alpha,\beta,\gamma}(1+|\xi|+|\eta|)^{-(|\beta|+|\gamma|)} \quad \text{for all multi-indices } \alpha,\beta,\gamma\in\mathbb{N}^{n}. \end{aligned}$$
(1.3)

If we denote $\kappa(x, y, z)$ by the inverse Fourier transform (in the ξ -variable and η -variable) of the function $\sigma(x, \xi, \eta)$ (i.e., $\kappa(x, y, z) = \mathcal{F}_{\xi}^{-1} \mathcal{F}_{\eta}^{-1} \sigma(x, \xi, \eta)$), then

$$T_{\sigma}(f_1, f_2)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \kappa(x, y, z) f_1(x - y) f_2(x - z) dy dz.$$
(1.4)

Further, if we set $K(x, y, z) = \kappa(x, x - y, x - z)$, then the bilinear pseudo-differential operators T_{σ} defined as in (1.4) is changed into the following standard form

$$T_{\sigma}(f_1, f_2)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y, z) f_1(y) f_2(z) dy dz.$$
(1.5)

Since then, the research about T_{σ} defined as in (1.5) on various function spaces is widely focused. For example, Bényi and Torres proved that T_{σ} is bounded from the products of spaces $L^{p}(\mathbb{R}^{n}) \times L^{q}(\mathbb{R}^{n})$ into $L^{r}(\mathbb{R}^{n})$, where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ for all $1 < p, q < \infty$ (see [3]). In 2012, Xiao et al. [26] showed that T_{σ} is bounded on the products of local Hardy spaces. More researches on the bilinear pseudo-differential operators can be seen [18–20, 25].

Before stating the organization of this paper, we first recall the definition of bound mean oscillation space = $BMO(\mathbb{R}^n)$ in [15].