Bilinear Pseudo-Differential Operator and Its Commutator on Generalized Fractional Weighted Morrey Spaces

Guanghui Lu^{*} and Shuangping Tao
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China

Received 6 June 2021; Accepted (in revised version) 15 November 2023

Abstract

The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_{σ} and its commutator $\left[b_{1}, b_{2}, T_{\sigma}\right]$ generated by T_{σ} and $b_{1}, b_{2} \in$ $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ on generalized fractional weighted Morrey spaces $L^{p, \eta, \varphi}(\omega)$. Under assumption that a weight satisfies a certain condition, the authors prove that T_{σ} is bounded from products of spaces $L^{p_{1}, \eta_{1}, \varphi}\left(\omega_{1}\right) \times L^{p_{2}, \eta_{2}, \varphi}\left(\omega_{2}\right)$ into spaces $L^{p, \eta, \varphi}(\vec{\omega})$, where $\vec{\omega}=\left(\omega_{1}, \omega_{2}\right) \in A_{\vec{p}}, \vec{P}=\left(p_{1}, p_{2}\right), \eta=\eta_{1}+\eta_{2}$ and $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ with $p_{1}, p_{2} \in$ $(1, \infty)$. Furthermore, the authors show that the $\left[b_{1}, b_{2}, T_{\sigma}\right]$ is bounded from products of generalized fractional Morrey spaces $L^{p_{1}, \eta_{1}, \varphi}\left(\mathbb{R}^{n}\right) \times L^{p_{2}, \eta_{2}, \varphi}\left(\mathbb{R}^{n}\right)$ into $L^{p, \eta, \varphi}\left(\mathbb{R}^{n}\right)$. As corollaries, the boundedness of the T_{σ} and $\left[b_{1}, b_{2}, T_{\sigma}\right]$ on generalized weighted Morrey spaces $L^{p, \varphi}(\omega)$ and on generalized Morrey spaces $L^{p, \varphi}\left(\mathbb{R}^{n}\right)$ is also obtained.

Key Words: Generalized fractional weighted Morrey space, bilinear pseudo-differential operator, commutator, space BMO $\left(\mathbb{R}^{n}\right)$.
AMS Subject Classifications: 42B20, 42B25, 42B35

1 Introduction

In 1967, Hörmander first introduced the definition of a pseudo-differential operator (see [13]), that is, let $\sigma(x, \xi)$ be a smooth function defined on $\mathbb{R}^{n} \times \mathbb{R}^{n}$, then the pseudodifferential operator \widetilde{T}_{σ} is defined by

$$
\begin{equation*}
\widetilde{T}_{\sigma}(f)(x)=\int_{\mathbb{R}^{n}} \sigma(x, \xi) \widehat{f}(\xi) e^{i x \cdot \xi} d \xi \quad \text { for } f \in \mathcal{S}, \tag{1.1}
\end{equation*}
$$

where \widehat{f} represents the Fourier transform of f, and the smooth function σ belongs to the symbol classes $S_{\rho, \delta,}^{m}$, which consist of all σ with satisfying the differential inequality

$$
\left|\partial_{x}^{\alpha} \partial_{\tilde{\xi}}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}
$$

[^0]for multi-indices $\alpha, \beta \in \mathbb{N}^{n}$, where $m \in \mathbb{R}$ and $0 \leq \rho, \delta \leq 1$. Such operators not only generalize the definition of differential operators with variable coefficients, but also have a key application in PDE. Therefore, the study of the pseudo-differential operator \widetilde{T}_{σ} is widely focused. For example, Calderón and Vaillancourt in [5] proved that \widetilde{T}_{σ} is bounded on space $L^{2}\left(\mathbb{R}^{n}\right)$. In 1988, Cardery and Seeger obtained the boundedness of pseudodifferential operator \widetilde{T}_{σ} on spaces L^{p} (see [4]). The more researches about the pseudodifferential operators \widetilde{T}_{σ} on various of function spaces can be seen $[1,2,10,11,14]$ and the references therein.

However, in 1975, Coifman and Meyer obtained the definition of bilinear pseudodifferential operators and their some properties (see [8]). Namely, let $m \in \mathbb{R}$ and $\rho, \delta \in$ $[0,1]$. A symbol in $B S_{\rho, \delta}^{m}$ is a smooth function $\sigma(x, \xi, \eta)$ defined on $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ such that for all multi-indices $\alpha, \beta, \gamma \in \mathbb{N}^{n}$, the following inequality

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq C_{\alpha, \beta, \gamma}(1+|\xi|+|\eta|)^{m-\rho(|\beta|+|\gamma|)+\delta|\alpha|}
$$

holds. Respectively, the bilinear pseudo-differential operators T_{σ} associated with the above function $\sigma(x, \xi, \eta) \in B S_{\rho, \delta}^{m}$ is defined by

$$
\begin{equation*}
T_{\sigma}\left(f_{1}, f_{2}\right)(x):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(x, \xi, \eta) \widehat{f}_{1}(\xi) \widehat{f}_{2}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \quad \text { for } \quad f_{1}, f_{2} \in \mathcal{S} \tag{1.2}
\end{equation*}
$$

In this paper, we will mainly consider the symbol $\sigma(x, \xi, \eta) \in B S_{1,0}^{0}$, that is,

$$
\begin{align*}
& \left|\partial_{x}^{\alpha} \partial_{\tilde{\xi}}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \\
\leq & C_{\alpha, \beta, \gamma}(1+|\xi|+|\eta|)^{-(|\beta|+|\gamma|)} \quad \text { for all multi-indices } \alpha, \beta, \gamma \in \mathbb{N}^{n} \tag{1.3}
\end{align*}
$$

If we denote $\kappa(x, y, z)$ by the inverse Fourier transform (in the ξ-variable and η-variable) of the function $\sigma(x, \xi, \eta)$ (i.e., $\kappa(x, y, z)=\mathcal{F}_{\xi}^{-1} \mathcal{F}_{\eta}^{-1} \sigma(x, \xi, \eta)$), then

$$
\begin{equation*}
T_{\sigma}\left(f_{1}, f_{2}\right)(x):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \kappa(x, y, z) f_{1}(x-y) f_{2}(x-z) d y d z \tag{1.4}
\end{equation*}
$$

Further, if we set $K(x, y, z)=\kappa(x, x-y, x-z)$, then the bilinear pseudo-differential operators T_{σ} defined as in (1.4) is changed into the following standard form

$$
\begin{equation*}
T_{\sigma}\left(f_{1}, f_{2}\right)(x):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y, z) f_{1}(y) f_{2}(z) d y d z \tag{1.5}
\end{equation*}
$$

Since then, the research about T_{σ} defined as in (1.5) on various function spaces is widely focused. For example, Bényi and Torres proved that T_{σ} is bounded from the products of spaces $L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right)$ into $L^{r}\left(\mathbb{R}^{n}\right)$, where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$ for all $1<p, q<\infty$ (see [3]). In 2012, Xiao et al. [26] showed that T_{σ} is bounded on the products of local Hardy spaces. More researches on the bilinear pseudo-differential operators can be seen [18-20, 25].

Before stating the organization of this paper, we first recall the definition of bound mean oscillation space $\left.=\operatorname{BMO}\left(\mathbb{R}^{n}\right)\right)$ in [15].

[^0]: *Corresponding author. Email addresses: lghwmm1989@126.com (G. Lu), taosp@nwnu.edu.cn (S. Tao)

