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Abstract

In this paper, by designing a normalized nonmonotone search strategy with the Barzilai-

Borwein-type step-size, a novel local minimax method (LMM), which is a globally con-

vergent iterative method, is proposed and analyzed to find multiple (unstable) saddle

points of nonconvex functionals in Hilbert spaces. Compared to traditional LMMs with

monotone search strategies, this approach, which does not require strict decrease of the

objective functional value at each iterative step, is observed to converge faster with less

computations. Firstly, based on a normalized iterative scheme coupled with a local peak

selection that pulls the iterative point back onto the solution submanifold, by generalizing

the Zhang-Hager (ZH) search strategy in the optimization theory to the LMM framework,

a kind of normalized ZH-type nonmonotone step-size search strategy is introduced, and

then a novel nonmonotone LMM is constructed. Its feasibility and global convergence re-

sults are rigorously carried out under the relaxation of the monotonicity for the functional

at the iterative sequences. Secondly, in order to speed up the convergence of the nonmono-

tone LMM, a globally convergent Barzilai-Borwein-type LMM (GBBLMM) is presented

by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the

normalized ZH-type nonmonotone step-size search strategy in each iteration. Finally, the

GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of

semilinear elliptic boundary value problems with variational structures: one is the semi-

linear elliptic equations with the homogeneous Dirichlet boundary condition and another

is the linear elliptic equations with semilinear Neumann boundary conditions. Extensive

numerical results indicate that our approach is very effective and speeds up the LMMs

significantly.
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1. Introduction

Let X be a Hilbert space. The critical points of a continuously Fréchet-differentiable func-

tional E : X → R are defined as solutions to the associated Euler-Lagrange equation

E′(u) = 0, u ∈ X,

where E′ is the Fréchet-derivative of E. The first candidates of critical points are local minima

and maxima on which traditional calculus of variations and optimization methods focus. Critical

points that are not local extrema are unstable and called saddle points. When the second-order

Fréchet-derivative E′′ exists at some critical point u∗, the instability of u∗ can be depicted

by its Morse index (MI) [5]. In fact, the MI of such a critical point u∗, denoted by MI(u∗),

is defined as the maximal dimension of subspaces of X on which the linear operator E′′(u∗)

is negative-definite. In addition, u∗ is said to be nondegenerate if E′′(u∗) is invertible. For

a nondegenerate critical point, if its MI = 0, it is a strict local minimizer and then a stable

critical point, while if its MI > 0, it is a saddle point and then an unstable critical point.

Generally speaking, the higher the MI is, the more unstable the critical point is.

Saddle points, as unstable equilibria or transient excited states, are widely found in numer-

ous nonlinear problems in physics, chemistry, biology and materials science [5,9,21,25,33,41,50].

They play an important role in many interesting applications, such as studying rare transitions

between different stable/metastable states [10, 14] and predicting morphologies of critical nu-

cleus in the solid-state phase transformation [48, 50], etc. Due to various difficulties in direct

experimental observation, more and more attentions have been paid to develop effective and re-

liable numerical methods for catching saddle points. Compared with the computation of stable

critical points, it is much more challenging to design a stable, efficient and globally convergent

numerical method for finding saddle points due to the instability and multiplicity. In recent

years, motivated by some early algorithms for searching for saddle points in computational

physics, chemistry, biology, the dimer method [20, 47], the gentlest ascent dynamics [15], the

climbing string method [14, 35] etc., have been proposed and successfully implemented to find

saddle points. It is noted that methods mentioned above mainly consider saddle points with

MI=1.

With the development of science and technology, the stable numerical computation of mul-

tiple unstable critical points with high MI has attracted more and more attentions both in

theories and applications. Studies of relevant numerical methods have been carried out in the

literature. Inspired by the minimax theorems in the critical point theory (see, e.g., [33]) and

the work of Choi and McKenna [11], Ding et al. [13] and Chen et al. [9], a local minimax

method (LMM) was developed by Li and Zhou [26, 27] with its global convergence established

in [27, 52]. As shown in [51], for a nondegenerate critical point found by the LMM, its MI

is determined a priori by the dimension of the given support space L (see the detail in Sec-

tion 2.1) as MI = dim(L) + 1. Therefore, the LMM is capable of selectively finding the saddle

points with any given MI = n ≥ 1 by appropriately constructing the support space L with

dim(L) = n − 1. Then, Xie et al. [41] modified the LMM with a significant relaxation for

the domain of the local peak selection, which is a vital definition for the LMM (see below),

and provided the global convergence analysis for this modified LMM by overcoming the lack of

homeomorphism of the local peak selection. More modifications and developments of the LMM

for multiple solutions of various problems, such as elliptic partial differential equations (PDEs)

with nonlinear boundary conditions, quasi-linear elliptic PDEs in Banach spaces, upper semi-

differentiable locally Lipschitz continuous functional and so on, have been also studied. We


