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HIGH-ORDER ENERGY STABLE NUMERICAL SCHEMES FOR
A NONLINEAR VARIATIONAL WAVE EQUATION MODELING

NEMATIC LIQUID CRYSTALS IN TWO DIMENSIONS

PEDER AURSAND AND UJJWAL KOLEY

Abstract. We consider a nonlinear variational wave equation that models the dynamics of the
director field in nematic liquid crystals with high molecular rotational inertia. Being derived from
an energy principle, energy stability is an intrinsic property of solutions to this model. For the two-
dimensional case, we design numerical schemes based on the discontinuous Galerkin framework
that either conserve or dissipate a discrete version of the energy. Extensive numerical experiments
are performed verifying the scheme’s energy stability, order of convergence and computational
efficiency. The numerical solutions are compared to those of a simpler first-order Hamiltonian
scheme. We provide numerical evidence that solutions of the 2D variational wave equation loose
regularity in finite time. After that occurs, dissipative and conservative schemes appear to converge
to different solutions.
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1. Introduction

1.1. The Equation. Liquid crystals (LCs) are mesophases, i.e., intermediate states
of matter between the liquid and the crystal phase. They possess some of the prop-
erties of liquids (e.g. formation, fluidity) as well as some crystalline properties (e.g.
electrical, magnetic, etc.) normally associated with solids. The nematic phase is
the simplest of the liquid crystal mesophases, and is close to the liquid phase. It is
characterized by long-range orientational order, i.e., the long axes of the molecules
tend to align along a preferred direction, which can be considered invariant under
rotation by an angle of π. The state of a nematic liquid crystals is usually given by
two linearly independent vector fields; one describing the fluid flow and the other
describing the dynamics of the preferred axis, which is defined by a vector n giving
its local orientation. Under the assumption of constant degree of orientation, the
magnitude of the director field n is usually taken to be unity. In the present work
we focus exclusively on the dynamics of the director field (independently of any
coupling with the fluid flow), a map

n : R3 × [0,∞)→ S2

from the Euclidean space to the unit ball.
We consider the elastic dynamics of the liquid crystal director field in the inertia-

dominated case (zero viscosity). Associated with the director field n, the classical
Oseen-Frank elastic energy density W is given by

(1) W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)
2

+ γ (n · (∇× n))
2
.

The constants α, β and γ are elastic material constants of the liquid crystal, and
are associated with the three basic types of deformations of the medium; bend,
splay and twist; respectively. Each of these constants must be positive in order

Received by the editors on April 9, 2015, and accepted on July 26, 2016.
1991 Mathematics Subject Classification. Primary 65M99; Secondary 65M60, 35L60.

20



RKDG SCHEMES FOR A VARIATIONAL WAVE EQUATION 21

to guarantee the existence of the minimum configuration of the energy W in the
undistorted nematic configuration.

The one constant approximation (α = β = γ) often provides a valuable tool to
reach a qualitative insight into distortions of nematic configurations. Observe that,
in this case the potential energy density (1) reduces to the Dirichlet energy

W(n,∇n) = α |∇n|2 .

This corresponds to the potential energy density used in harmonic maps into the
sphere S2. The stability of the general Oseen–Frank potential energy equation, de-
rived from the potential (1) using a variational principle, is studied by Ericksen and
Kinderlehrer [8]. For the parabolic flow associated to (1), see [3, 7] and references
therein.

In the regime in which inertial effects dominate viscosity, the dynamics of the
director n is governed by the least action principle

(2) J(n) =

∫∫ (
n2
t −W(n,∇n)

)
dx dt, n · n = 1.

Standard calculations reveal that the Euler-Lagrange equation associated to J is
given by

(3) ntt = div (W∇n(n,∇n))−Wn(n,∇n),

and is termed the variational wave equation. Introducing the energy and energy
density

E(t) =

∫ (
n2
t +W(n,∇n)

)
dx, E(t, x) = n2

t +W(n,∇n),

it is easy to check the identities

E ′ = 0, Et = div (W∇n(n,∇n)nt) ,

in light of (3). Given the formidable difficulties in the mathematical analysis of
(3), it is customary to investigate the particular case of a planar director field
configuration.

The physical implications of considering the inertia-dominated regime warrants a
comment. Indeed, in many experimental situations the inertial forces acting on the
director are orders of magnitude smaller than the dissipative. For this reason, the
inertial term is often neglected in modelling [9, 25, 26]. It was however noted early
by Leslie [21] that inertial forces might be significant in cases where the director
field is subjected to large accelerations. In general, inertia will be more significant
in the small time-scale dynamics of the director. For this reason, their inclusion
can be warranted in, e.g., liquid crystal acoustics [19], mechanical vibrations [27]
and in cases with and external oscillating magnetic field [28].

1.1.1. One-dimensional planar waves. Planar deformations are central in the
mathematical study of models for nematic liquid crystals. A simple such model can
be derived by assuming that the deformation depends on a single space variable x
and that the director field n in confined to the x-y plane. In this case we can write
the director as

n = (cosu(x, t), sinu(x, t), 0).


