Weak Type Estimates for Intrinsic Square Functions on Weighted Morrey Spaces

Hua Wang*

Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China.

Received 4 September 2012

Abstract. In this paper, we will obtain the weak type estimates of intrinsic square functions including the Lusin area integral, Littlewood-Paley *g*-function and g_{λ}^* -function on the weighted Morrey spaces $L^{1,\kappa}(w)$ for $0 < \kappa < 1$ and $w \in A_1$.

Key Words: Intrinsic square function, weighted Morrey space, A_p weight.

AMS Subject Classifications: 42B25, 42B35

1 Introduction and main results

Let $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times (0,\infty)$ and $\varphi_t(x) = t^{-n}\varphi(x/t)$. The classical square function (Lusin area integral) is a familiar object. If $u(x,t) = P_t * f(x)$ is the Poisson integral of f, where

$$P_t(x) = c_n \frac{t}{(t^2 + |x|^2)^{(n+1)/2}}$$

denotes the Poisson kernel in \mathbb{R}^{n+1}_+ . Then we define the classical square function (Lusin area integral) S(f) by (see [16,17])

$$S(f)(x) = \left(\iint_{\Gamma(x)} \left| \nabla u(y,t) \right|^2 t^{1-n} dy dt \right)^{1/2},$$

where $\Gamma(x)$ denotes the usual cone of aperture one:

$$\Gamma(x) = \{ (y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t \}$$

and

$$\left|\nabla u(y,t)\right|^2 = \left|\frac{\partial u}{\partial t}\right|^2 + \sum_{j=1}^n \left|\frac{\partial u}{\partial y_j}\right|^2.$$

^{*}Corresponding author. Email address: wanghua@pku.edu.cn (H. Wang)

Similarly, we can define the cone of aperture β for any $\beta > 0$:

$$\Gamma_{\beta}(x) = \left\{ (y,t) \in \mathbb{R}_{+}^{n+1} : |x-y| < \beta t \right\}$$

and the corresponding square function

$$S_{\beta}(f)(x) = \left(\iint_{\Gamma_{\beta}(x)} \left| \nabla u(y,t) \right|^2 t^{1-n} dy dt \right)^{1/2}.$$

The Littlewood-Paley g-function (could be viewed as a "zero-aperture" version of S(f)) and the g_{λ}^* -function (could be viewed as an "infinite aperture" version of S(f)) are defined respectively by

$$g(f)(x) = \left(\int_0^\infty |\nabla u(x,t)|^2 t dt\right)^{1/2}$$

and

$$g_{\lambda}^*(f)(x) = \left(\iint_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x-y|} \right)^{\lambda n} \left| \nabla u(y,t) \right|^2 t^{1-n} dy dt \right)^{1/2}, \quad \lambda > 1.$$

The modern (real-variable) variant of $S_{\beta}(f)$ can be defined in the following way (here we drop the subscript β if $\beta = 1$). Let $\psi \in C^{\infty}(\mathbb{R}^n)$ be real, radial, have support contained in $\{x : |x| \le 1\}$, and $\int_{\mathbb{R}^n} \psi(x) dx = 0$. The continuous square function $S_{\psi,\beta}(f)$ is defined by (see, e.g., [2,3])

$$S_{\psi,\beta}(f)(x) = \left(\iint_{\Gamma_{\beta}(x)} |f * \psi_t(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}.$$

In 2007, Wilson [25] introduced a new square function called intrinsic square function which is universal in a sense (see also [26]). This function is independent of any particular kernel ψ , and it dominates pointwise all the above-defined square functions. On the other hand, it is not essentially larger than any particular $S_{\psi,\beta}(f)$. For $0 < \alpha \le 1$, let \mathcal{C}_{α} be the family of functions φ defined on \mathbb{R}^n such that φ has support containing in $\{x \in \mathbb{R}^n : |x| \le 1\}$, $\int_{\mathbb{R}^n} \varphi(x) dx = 0$, and for all $x, x' \in \mathbb{R}^n$,

$$|\varphi(x)-\varphi(x')| \leq |x-x'|^{\alpha}.$$

For $(y,t) \in \mathbb{R}^{n+1}_+$ and $f \in L^1_{loc}(\mathbb{R}^n)$, we set

$$A_{\alpha}(f)(y,t) = \sup_{\varphi \in \mathcal{C}_{\alpha}} \left| f * \varphi_t(y) \right| = \sup_{\varphi \in \mathcal{C}_{\alpha}} \left| \int_{\mathbb{R}^n} \varphi_t(y-z) f(z) dz \right|.$$

Then we define the intrinsic square function of f of order α by the formula

$$S_{\alpha}(f)(x) = \left(\iint_{\Gamma(x)} \left(A_{\alpha}(f)(y,t) \right)^{2} \frac{dydt}{t^{n+1}} \right)^{1/2}.$$