
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 25, No. 2, pp. 187-198

doi: 10.4208/jpde.v25.n2.5
May 2012

Existence of Positive Solutions for Kirchhoff Type

Problems with Critical Exponent

SUN Yijing and LIU Xing∗

School of Mathematics, Graduate University of the Chinese Academy of Sciences,
Beijing 100049, China.

Received 7 October 2011; Accepted 13 March 2012

Abstract. In this paper, we consider the following Kirchhoff type problem with critical
exponent







−
(

a+b
∫

Ω
|∇u|2dx

)

∆u=λuq+u5, in Ω,

u=0, on ∂Ω,

where Ω ⊂ R3 is a bounded smooth domain, 0< q < 1 and the parameters a,b,λ> 0.
We show that there exists a positive constant T4(a) depending only on a, such that for
each a>0 and 0<λ<T4(a), the above problem has at least one positive solution. The
method we used here is based on the Nehari manifold, Ekeland’s variational principle
and the concentration compactness principle.
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1 Introduction and main results

This paper is devoted to the study of the existence of positive solutions of the following
Kirchhoff-type problem with critical exponent







−
(

a+b
∫

Ω
|∇u|2dx

)

∆u=λuq+u5, in Ω,

u=0, on ∂Ω,
(Pa,b

λ )
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where, through this work, Ω⊂R3 is a bounded smooth domain, 0<q<1, and the param-
eters a,b,λ>0.

It is well known that the Kirchhoff type problem has a mechanical and biological
motivation (c.f. [1, 2]) and has attracted the attention of many researchers after the work
of Lions [3], where a functional analysis approach was proposed to attack it. The reader
may consult [1–9] and the references therein, for more information about this problem.

In the case a=1 and b=0, Problem (P1,0
λ ) has been studied extensively. For example,

Brezis et al. [10] has shown that Problem (P1,0
λ ) has at least one positive solution for

3 < q < 5. When 0 < q < 1, Ambrosetti et al. [11] has proved that there exists λ∗ such

that (P1,0
λ ) has at least two positive solutions for λ∈ (0,λ∗).

A natural interesting question is whether the results concerning the solutions of (P1,0
λ )

remain true for the problem (Pa,b
λ ) with b>0. Stimulated by [4] and [12], in this paper we

study problem (Pa,b
λ ) and give some positive answers; to our knowledge, the results in

this paper are new for the case 0<q<1.
The main idea of our paper is as follows. Firstly, we consider the Nehari manifold

Λλ=
{

u∈H1
0(Ω)| < I ′λ(u),u>=0

}

, (1.1)

where Iλ(u)∈C1(H1
0(Ω),R) is given by

Iλ(u)=
a

2

∫

Ω
|∇u|2dx+

b

4

(

∫

Ω
|∇u|2dx

)2

− λ

1+q

∫

Ω
|u|1+qdx− 1

6

∫

Ω
|u|6dx.

Then we split Λλ into three parts:

Λ+
λ =

{

u∈Λλ|(1−q)a‖u‖2
H1 +(3−q)b‖u‖4

H1 > (5−q)
∫

Ω
|u|6dx

}

, (1.2)

Λ0
λ=

{

u∈Λλ|(1−q)a‖u‖2
H1 +(3−q)b‖u‖4

H1 =(5−q)
∫

Ω
|u|6dx

}

, (1.3)

Λ−
λ =

{

u∈Λλ|(1−q)a‖u‖2
H1 +(3−q)b‖u‖4

H1 < (5−q)
∫

Ω
|u|6dx

}

, (1.4)

where we set ‖u‖H1 =
(∫

Ω
|∇u|2dx

)
1
2 for u ∈ H1

0(Ω). Finally by Ekeland’s variational
principle, we can prove that Iλ(u) has a critical point uλ∈Λ+

λ .
Before stating the main result, we give some constants. Throughout this paper, we

denote by Sr the best Sobolev constant for the embedding of H1
0(Ω) into Lr(Ω) for all

1< r≤6. Moreover, we define T1(a), K, T2(a), T3(a) and T4(a) by

T1(a)=
4

5−q

(

1−q

5−q

)

1−q
4

a
5−q

4 S1+q

1+q
2 S6

3(1−q)
4 , (1.5a)

K=
2(3−q)

5−q
, (1.5b)


