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Abstract. In this paper, we study the positive solutions for a class of integral systems
and prove that all the solutions are radially symmetric and monotonically decreas-
ing about some point. Moreover, we also obtain the uniqueness result for a special
case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our
new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maxi-
mum Principle.
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1 Introduction

In this paper, we study positive solutions of the following system of integral equations in
]RN
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with k=p=g=t=(N+a)/(N—a) and 0 <a < N. Under the local integrability con-
ditions u € LIZOIZ /(N=a) (RN) and v e le(f\cl / (Nf'x)(]RN ), we first prove that all the solutions
are radially symmetric and monotonically decreasing about some point, then we also ob-
tain the uniqueness result for the special case « =2. We shall use a new type of moving
plane method introduced by Chen-Li-Ou, which technically uses the Hardy-Littlewood-
Sobolev inequality instead of Maximum Principle.

*Corresponding author.  Email addresses: zhangzc@mail.xjtu.edu.cn (Z. Zhang), 2003jmj@163.com
(M. Jiang)

http:/ /www.global-sci.org/jpde/ 351



352 Z. Zhang and M. Jiang / J. Partial Diff. Eq., 24 (2011), pp. 351-360

The integral system (1.1) is closely related to the system of PDEs

A2y =uk 40P,
(=) u,0>0in RV, (1.2)
(—A)Po=ul+o,

In fact, every positive smooth solution of PDE (1.2) multiplied by a constant satisfies
(1.1). This can be easily verified as in the proof of Theorem 4.5 in [1]. We also refer this
equivalence to [2] for a system with a =2. In fact, in (1.2), we define the positive solution
of (1.2) in the distribution sense, i.e., u,o € H*/2(IRN) satisfies, for any ¢ € C5° and ¢ >0,

[ (=) = [ )+ (0)]p()dx, "

Jo(FR) o8 gdx= [ [u1(x) 4! (0)]g(x)al,

IRN

where
/RN(—A)M4u<_A)a/4¢dx and /]RN<_A)M4U(_A)M4¢dx

are defined by the Fourier transform
| e n@)g@)de and [ e a(@)d(@)de.

Here, i,7 and ¢ are the Fourier transforms of u,v and ¢, respectively. By taking limits,
one can see that (1.3) is also true for any ¢ € H*/2.

Since we shall use Hardy-Littlewood-Sobolev inequality to prove radial symmetry
and monotonicity of our solutions, we begin by recalling the well-known Hardy-Little-
wood-Sobolev inequality. Let A,s,r be real numbers satisfying 0 <a <N, r,s > 1, and
||, be the LP(RN) norm of the function f. We shall write by ||f||;»(q) the L? norm of
the function f on the domain ). Then the classical Hardy-Littlewood-Sobolev inequality
states that

f(*)8(y)
Jo o B sy <l Ly

for any f € L'(RN), g € L(RY), and 1/r+1/s = (N+a)/N. To find the best constant
C=C(a,s,N) in the inequality, one can maximize the functional

_ f(x)8(y)
](f’g)_/RN/RNWdXdy (1.5)

under the constraints || f||, = |g]|s =1
There are some related works about this paper. When k=p=g=t=(N+«)/(N—«a)
and u(x) =v(x), System (1.1) becomes the single equation

N+a

_ u(]/) N-a . N
“(x)—/RNWdy, u>01in R™. (1.6)




