Nonradial Entire Large Solutions of Semilinear Elliptic Equations

LAIR Alan V.*
Department of Mathematics and Statistics, Air Force Institute of Technology, 2950
Hobson Way, Wright Patterson AFB, OH 45433-7765, USA.

Received 18 February 2010; Accepted 9 August 2010

Abstract

We consider the problem of whether the equation $\Delta u=p(x) f(u)$ on \mathbf{R}^{N}, $N \geq 3$, has a positive solution for which $\lim _{|x| \rightarrow \infty} u(x)=\infty$ where f is locally Lipschitz continuous, positive, and nondecreasing on $(0, \infty)$ and satisfies $\int_{1}^{\infty}[F(t)]^{-1 / 2} \mathrm{~d} t=\infty$ where $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$. The nonnegative function p is assumed to be asymptotically radial in a certain sense. We show that a sufficient condition to ensure such a solution u exists is that p satisfies $\int_{0}^{\infty} r \min _{|x|=r} p(x) \mathrm{d} r=\infty$. Conversely, we show that a necessary condition for the solution to exist is that p satisfies $\int_{0}^{\infty} r^{1+\varepsilon} \min _{|x|=r} p(x) \mathrm{d} r=\infty$ for all $\varepsilon>0$.

AMS Subject Classifications: 35J61, 35J25
Chinese Library Classifications: O175.25, O175.8
Key Words: Large solution; elliptic equation; semilinear equation.

1 Introduction

We consider the problem

$$
\begin{array}{ll}
\Delta u=p(x) f(u), & x \in \mathbf{R}^{N}(N \geq 3) \\
u(x) \rightarrow \infty & \text { as }|x| \rightarrow \infty \tag{1.2}
\end{array}
$$

where the nonnegative function p is locally Hölder continuous on \mathbf{R}^{N} and the nondecreasing function f is locally Lipschitz continuous on $(0, \infty)$, satisfies $f(0)=0, f(s)>0$ for $s>0$, and

$$
\begin{equation*}
\int_{1}^{\infty}[F(t)]^{-1 / 2} \mathrm{~d} t=\infty, \quad F(t) \equiv \int_{0}^{t} f(s) \mathrm{d} s \tag{1.3}
\end{equation*}
$$

[^0]A positive solution of (1.1) which satisfies (1.2) is called an entire large solution of (1.1). Our interest is in giving necessary and sufficient conditions for the existence of such a solution. In doing this, we also extend the existence results of [1-5] to a broader class of functions f.

In [1] Wood and I proved that, for $f(s)=s^{\gamma}, 0<\gamma \leq 1$ and p radial (i.e., $p(x)=p(|x|)$), a necessary and sufficient condition for (1.1) to have an entire large solution is that p satisfies

$$
\int_{0}^{\infty} r p(r) \mathrm{d} r=\infty .
$$

We then asked whether a similar result is true if p is nonradial (Remark 1 of [1]); i.e., we asked whether (1.1) will have a positive entire large solution if p is nonradial and satisfies

$$
\begin{equation*}
\int_{0}^{\infty} r p_{*}(r) \mathrm{d} r=\infty, \quad p_{*}(r) \equiv \min _{|x|=r} p(x) \tag{1.4}
\end{equation*}
$$

In [2] I showed that it is true if p is appropriately asymptotically radial. In particular, I showed that if f is sublinear (i.e., $\sup _{s \geq 1} f(s) / s \equiv \Lambda<\infty$) and the difference

$$
p_{o s c}(r) \equiv p^{*}(r)-p_{*}(r), \quad \text { with } p^{*}(r) \equiv \max _{|x|=r} p(x)
$$

satisfies

$$
\begin{equation*}
\int_{0}^{\infty} t p_{o s c}(t) \exp \left(\frac{\Lambda}{N-2} \int_{0}^{t} s p_{*}(s) \mathrm{d} s\right) \mathrm{d} t<\infty \tag{1.5}
\end{equation*}
$$

then (1.4) is both necessary and sufficient for (1.1) to have an entire large solution. Yang [3] extended this to functions f satisfying

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\mathrm{d} s}{f(s)}=\infty, \tag{1.6}
\end{equation*}
$$

provided p satisfies

$$
\begin{equation*}
\int_{0}^{\infty} r p_{o s c}(r) f \circ G^{-1}\left(\frac{2}{N-2} \int_{0}^{r} s p^{*}(s) \mathrm{d} s\right) \mathrm{d} r<\infty, \tag{1.7}
\end{equation*}
$$

where G^{-1} is the inverse of the function

$$
G(r)=\int_{1}^{r} \frac{\mathrm{~d} s}{f(s)}
$$

We note that condition (1.6) includes the sublinear case in [2], but the condition (1.7) on p is, in general, more restrictive than (1.5) since, for example, if f is linear it requires $p_{o s c}$ to decay faster than an exponential in p^{*} rather than p_{*}. El Mabrouk and Hansen [4] showed that the condition (1.5) could be weakened considerably to

$$
\int_{0}^{\infty} t p_{o s c}(t)\left(1+\int_{0}^{t} s p_{*}(s) \mathrm{d} s\right)^{\gamma /(1-\gamma)} \mathrm{d} t<\infty
$$

[^0]: ${ }^{*}$ Corresponding author. Email addresses: Alan.Lair@afit.edu, alanlair@gmail.com (A. V. Lair)

