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Abstract This paper concerns the existence and multiplicity of solutions for some

semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sub-

linear nonlinearity at origin. By using Ekeland,s variational principle, we conclude

the existence of nontrivial solution for this problem, the Clark,s critical point theorem

is used to prove the existence of infinitely many solutions for this problem with odd

nonlinearity.
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1. Introduction and Main Results

In this paper, we consider the following nonlinear Dirichlet problem:

{

−∆u − µ u
|x|2

= |u|2
∗−2u + λf(x, u), x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω,
(1)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω and 0 ∈

Ω, 2∗ = 2N
N−2 is the critical Sobolev exponent, 0 ≤ µ < µ

△
= (N−2

2 )2, λ > 0 and

f ∈ C(Ω × R,R) satisfies the following conditions:

(f1) lim
|t|→∞

f(x, t)

|t|2∗−1
= 0 uniformly for x ∈ Ω;
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(f2) lim
|t|→0

f(x, t)

t
= +∞ uniformly for x ∈ Ω;

(f3) f(x,−t) = −f(x, t) for all t ∈ R and x ∈ Ω.

By Hardy inequality (see [1]):

∫

Ω

|u|2

|x|2
dx ≤

1

µ

∫

Ω
|∇u|2dx, ∀u ∈ H1

0 (Ω),

we easily derive that for 0 ≤ µ < µ, ‖u‖ =
(

∫

Ω

(

|∇u|2 − µ
|u|2

|x|2

)

dx
)

1

2

is a norm in

H1
0 (Ω), which is equivalent to the usual norm (

∫

Ω |∇u|2dx)
1

2 , and the best Hardy-

Sobolev constant is defined by

Sµ = inf
u∈H1

0
(Ω)\{0}

∫

Ω

(

|∇u|2 − µ
|u|2

|x|2

)

dx

(
∫

Ω
|u|2

∗

dx

)
2

2∗

> 0.

The energy function corresponding to (1) is given by

I(u) =
1

2

∫

Ω

(

|∇u|2 − µ
u2

|x|2

)

dx −
1

2∗

∫

Ω
|u|2

∗

dx − λ

∫

Ω
F (x, u)dx,

where F (x, t) is a primitive function of f(x, t) defined by F (x, t) =
∫ t

0 f(x, s)ds for x ∈

Ω, t ∈ R. It follows from Hardy inequality and f ∈ C(Ω×R,R) that I ∈ C1(H1
0 (Ω), R).

Now it is well known that there exists one to one correspondence between the weak

solutions of (1) and the critical points of I on H1
0 (Ω). More precisely we say that

u ∈ H1
0 (Ω) is a weak solution of (1), if for any v ∈ H1

0 (Ω), there holds

〈I ′(u), v〉 =

∫

Ω

(

∇u∇v − µ
uv

|x|2

)

dx −

∫

Ω
|u|2

∗−2uvdx − λ

∫

Ω
f(x, u)vdx = 0. (2)

In recent years, much attention has been paid to the special case of (1), with

f(x, u) ≡ u:
{

−∆u − µ u
|x|2

= |u|2
∗−2u + λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3)

Jannelli [2] considers the problem (3) and prove that the problem (3) admits a positive

solution for 0 < µ ≤ µ − 1 and λ ∈ (0, λ1(µ)); for µ − 1 < µ < µ and Ω = B1(0), there

exists λ∗ ∈ (0, λ1(µ)) such that the problem (3) admits a positive solution if and only

if λ ∈ (λ∗, λ1(µ)), where λ1(µ) is the first eigenvalue of −∆ − µ
|x|2

in H1
0 (Ω). Cao and

Peng [3] also consider the problem (3) and prove that for N ≥ 7, µ ∈ [0, µ − 4), the

problem (3) possesses at least a pair of sign-changing solutions for any λ ∈ (0, λ1(µ)).

Cao and Han [4] prove that for µ ∈

[

0, µ−(N+2
N

)2
)

the problem (3) admits a nontrivial


