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Abstract Maximum principles for weak solutions of nonhomogeneous subelliptic
p-Laplace equations related to smooth vector fields {X;} satisfying the Hérmander
condition are proved by the choice of suitable test functions and the adaption of the
classical Moser iteration method. Some applications are given in this paper.
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1. Introduction

Over the last decades, the study of nonelliptic equations arising from general families
of non-commuting vector fields has made a great development. In spite of the formidable
progress, there is still much to discover concerning the basic properties of solutions to
these classes of equations.

Consider a family of C"*° vector fields X1, -+, Xy in R”, and assume that Hormander
finite rank condition [1]

rank Lie [X1, -, Xn]=n (1.1)

is satisfied at each z € R™. In this paper we are concerned with a kind of the so-called
subelliptic p-Laplace equation:

N

3 x; (yxu\p—2xju) =0, (1.2)

Jj=1

where X]’-k denotes the formal adjoint of X;, Xu = (Xju, -+, Xyu) is the subelliptic
gradient of u and 1 < p < oo is fixed. It appears in the study of quasiregular mappings
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in stratified Lie groups, also known as Carnot groups [2]. We note that (1.2) is the
Fuler-Lagrange equation of the Sobolev functional

JIp(w) —/\Xu\pda;. (1.3)

When p = 2, (1.2) is the Homander type equation
N
> X Xju=0. (1.4)
j=1

An important result in the study of (1.4) was given in Nagel, Stein and Wainger’s
famous paper [3], in which the following estimates for the Carnot-Carathéodory metric
balls were proved: for every K CC R", there exist positive constants C', Ry and () such
that, forany s CK, 0 <r < Rg, and 0 <t < 1,

‘Bd(.%’,t’l“)’ > CtQ |Bd($7 ’I")| ) (15)

where By(z,r) = {y € R"|d(z,y) < r} is the ball relative to the control distance d
associated to the vector fields X1, -, X, . The number @) plays the role of a dimension
in the local analysis of (1.4). It will be called the homogeneous dimension of K with
respect to the family Xy, -, X .

In [2], a strong maximum principle of homogeneous subelliptic equations is given
with the Holder estimate. Gutiérrez and Lanconelli in [4] proved a maximum principle
and Harnack inequalities for second order uniformly X-elliptic operators. Xu has stud-
ied some subelliptic equations associated with the vector fields satisfying Hormander
condition. He obtained regularity for quasilinear subelliptic equations in [5] and Sobolev
inequality of these vector fields in [6]. Primarily inspired by [4], our purpose is to es-
tablish a maximum principle for the nonhomogeneous equation

N

Lyu =3 X ([ XulP X ju) = f(2), (1.6)
j=1

on the bounded open subset in R™. Although the method we used is similar to that of
[4], the question we discussed here is nonlinear in substance.

We introduce some definitions and results that will be needed in the sequel. So-
lutions to (1.6) shall be understood in a suitable weak sense. Throughout the paper,
Q) denotes a bounded open subset in R™ and @ is the homogeneous dimension of
relative to Xq,--- , Xn.

Let S1?(Q2) be the closure of {u € C*°(Q) : u, Xju € LP(), for 1 < j < N} under
the norm

P
[ullsrpi) = [/Q(Iup+ [XulP)dz| . (1.7)



