A CARLEMAN ESTIMATE ON GROUPS OF HEISENBERG TYPE*

Han Junqiang and Niu Pengcheng
(Department of Applied Mathematics, Northwestern Polytechnical University,
Xi'an, 710072, China)
(E-mail: southhan@163.com)
(Received May. 24, 2005; revised Sup. 11, 2006)

Abstract A Pohozaev-Rellich type identity for the p-sub-Laplacian on groups of Heisenberg type, G, is given. A Carleman estimate for the sub-Laplacian on G is established and, as a consequence, a unique continuation result is proved.

Key Words Pohozaev-Rellich type identity, Carleman estimate, unique continuation, sub-Laplacian, group of Heisenberg type.

2000 MR Subject Classification 35H99, 43A80. Chinese Library Classification 0175.2.

1. Introduction

Let G be a Carnot group of step r, with Lie algebra $g = \bigoplus_{j=1}^r V_j$. Suppose that g is equipped with a scalar product with respect to which the V_j 's are mutually orthogonal. We use the exponential map: $\exp: g \to G$ to define analytic maps: $\xi_i: G \to V_i, i = 1, \ldots, r$, through the equation $g = \exp(\xi_1(g) + \ldots + \xi_r(g))$. Here, $\xi(g) = \xi_1(g) + \cdots + \xi_r(g)$ is such that $g = \exp(\xi(g))$. With $m = \dim(V_1)$, the coordinates of the projection ξ_1 in the basis X_1, \ldots, X_m is denoted by $x_1 = x_1(g), \ldots, x_m = x_m(g)$ and we set $x = x(g) = (x_1(g), \ldots, x_m(g)) \in \mathbb{R}^m$. Fix an orthogonal basis Y_1, \ldots, Y_k of V_2 and define the exponential coordinates in the second layer V_2 of a point $g \in G$ by $y = (y_1, \ldots, y_k) \in \mathbb{R}^k$.

For a Carnot group of step two with Lie algebra $g=V_1\oplus V_2$, the map $J:V_2\to End(V_1)$ defined by

$$< J(\xi_2)\xi_1^{'}, \xi_1^{''}> = <\xi_2, [\xi_1^{'}, \xi_1^{''}]>, \text{ for } \xi_2 \in V_2 \text{ and } \xi_1^{'}, \xi_1^{''} \in V_1.$$

A Carnot group of step two, G, is called of Heisenberg type, if for every vector $\xi_2 \in V_2$ with $|\xi_2| = 1$, the map $J(\xi_2) : V_1 \to V_1$ is orthogonal. (see [1]).

^{*}The project supported by National Natural Science Foundation of China, Grant No. 10371099.

The sub-Laplacian on the group of Heisenberg type G is given by

$$L = \sum_{j=1}^{m} X_j^2, \tag{1.1}$$

where $\{X_1, \ldots, X_m\}$ is the basis of V_1 . The p-sub-Laplacian on G is

$$L_p u = \sum_{j=1}^m X_j (|Xu|^{p-2} X_j u), \qquad (1.2)$$

for a function u on G.

Kaplan in [1] solved the fundamental solutions for the sub-Laplacian on the group of Heisenberg type G. Recently, Capogna, Danielli and Garofalo [2] obtained the fundamental solutions of p-sub-Laplacian on such groups. Garofalo and Vassilev [3, 4] also studied positive solutions to the CR Yamabe problem on G. Garofalo [5] obtained a Carleman estimate and unique continuation for the generalized Baouendi-Grushin operator. Zhang, Niu and Wang [6] considered the similar properties for the sub-Laplacian on the Heisenberg group.

The purpose of the present paper is to prove a Carleman estimate for L and unique continuations for solutions of the differential inequality (5.1) below.

In Section 2 we collect several basic results on the group of Heisenberg type and the sub-Laplacian. Section 3 is devoted to prove the Pohozaev-Rellich type identity for the p-sub-Laplacian. In Section 4 a Carleman estimate for the sub-Laplacian is established under suitable assumptions. As a consequence of it, the last section contains a unique continuation result.

2. Some Known Facts

Suppose that G is a group of Heisenberg type. As stated in [3, 4], it has

$$X_j = \frac{\partial}{\partial x_j} + \frac{1}{2} \sum_{i=1}^k \langle [\xi, X_j], Y_i \rangle \frac{\partial}{\partial y_i}, j = 1, \dots, m,$$

$$(2.1)$$

where $\xi = \xi_1 + \xi_2 \in g = V_1 \bigoplus V_2$, $x = (x_1, \dots, x_m) \in \mathbb{R}^m$, $y = (y_1, \dots, y_k) \in \mathbb{R}^k$.

For a function u on G, we denote the horizontal gradient by $Xu = (X_1u, \dots, X_mu)$ and let $|Xu| = \left(\sum_{j=1}^m |X_ju|^2\right)^{\frac{1}{2}}$. A family of non-isotropic dilation on G is

$$\delta_{\lambda}(x,y) = (\lambda x, \lambda^2 y), \qquad \lambda > 0, (x,y) \in G.$$
 (2.2)

A homogeneous dimension of G is Q = m + 2k. The generator of the group $\{\delta_{\lambda}\}_{{\lambda}>0}$ is

$$Z = \sum_{i=1}^{m} x_j \frac{\partial}{\partial x_j} + 2 \sum_{i=1}^{k} y_i \frac{\partial}{\partial y_i}.$$
 (2.3)