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A CRITICAL VALUE FOR GLOBAL NONEXISTENCE OF
SOLUTION OF A WAVE EQUATION*
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Abstract Consider the Cauchy problem for a wave equation on R?: u; — Au =
lulP~lu. In 1981 Glassey gave a guess to a critical value p(2) = 1 (34 V/17): when
p > p(2) there may exist a global solution and when 1 < p < p(2) the solution may
blow up. By our main result in this paper a counter example to the guess is given that
the solution may also blow up in finite time even if p(2) < p < 5.

Key Words  Wave equation; global nonexistence; a guess to critical value.

2000 MR Subject Classification 35L05, 35L70.

Chinese Library Classification O 175.27.

Consider the Cauchy problem for a wave equation on R?:
0?u(z,t)

ot?
’LL(:L',O) :f(x)v ut(x70) :g(ilf), WS RQa

— Au = |ulPtu, teR? 0<t<T,

where we assume that

(H1)  f(=), g(x) € C§°(R?), supp{f,g} C {llz] < L},

fdz >0, / gdx > 0.
R2 R?

Theorem(Glassey[1]) When 1 < p < p(2) = 3 (3+V17), T < oo, i.c the
solution of (1) may blow up in finite time T < +o0.

In Case R?, John[2] gave the critical value p(3) = 1 4+ v/2: when 1 < p < p(3)
the solution may blow up and when p > p(3) there may exist global solution. Thus,
Glassey gave a guess that p(2) may also be a critical value for blow up: there may exist
a global solution if p > p(2). But a counter example can be given to Glassey’s guess
by our following main result.

Theorem Let u(z,t) € C?(R? x [0,T]) be a nontrivial solution of (1) with finite
speed of propagation. Assume that
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(H1) The same as Glassey Theorem, and [n, fgdx >0, f(z) # 0,

(H2) 3 <p<5,

(H3) Iy = z% Jre 1fIPPEdz — [ [re (IVf* + |g]?) dz] > 0.
Then T < +00, i.e the solution of (1) may blow up in finite time T < +o0.

Remark It is well known that (H1) implies the existence of a unique classical
solution to (1).

Proof We will estimate F(t) = [, u?(x,t)dz by using the method similar to[3].

First, multiplying the equation (1) by u(z,t) and integrating over R?, we have

1 p—1 2
—F"(t) = —— up“dx—i-/ upHda:—i-/ qux—/ Vul?dz. (2
s =20 [ e 20 [ par— [ vuPar. (@

Next, multiplying the equation (1) by u; and integrating over R? x [0,t] we have

2
2 +1 2
d = — p d — C d.’17 — 1. 3
/Rz ’u” . p+1 /32 ’ut‘ o /Rz ’ u‘ 0 ( )

By (H3), (2) and (3) yield

1 _p—1

() =15 —
() p—|-1 R2

|u|p+1d:1:+2/ |ug|2da + Io. (4)
2 R2

Thus F”(t) > 0 and F’(t) is monotone nondecreasing. Therefore F'(t) > F’'(0) > 0 by
(H1), and F(t) is also monotone nondecreasing , thus F(t) > F(0) = [p, f*dz > 0.
Now, by finite speed of propagation and by (H1), we have

e ry
F(t) :/ u?dx :/ uidr < {/ |u]p+1d:c} {/ 1d:c}
R2 lzl|<t+L lzl|<t+L lzl|<t+L

i.e.

)" <72 (14 L) /R s, (5)
Combining (5) with (4), we obtain

F'(t) > Co(t+ L)' "F(1)% (6)
but F(t) > F(0) = [p. f*dz > 0, thus
F'(t) > ko(t +L)'P,
SO
F'(t) > F'(0) + 2]?])(15 + L)*7P — 2’“_°pL2—p.



