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Abstract In this paper, the perturbed higher-order NLS equation with periodic
boundary condition is considered. The existence of the homoclinic orbits for the trun-
cation equation is established by Melnikov analysis and geometric singular perturbation
theory.
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1. Introduction

By using the reductive perturbation method, Kodama and Hasegawa proposed a
higher-order nonlinear Schrödinger (HNLS) equation

iqt + 1
2k1qxx + l |q|2q
= −iε

[
−1

6k2qxxx + h1(q|q|2)x − h2(|q|2)xq
]
.

(1)

It can be used to describe the propagation of a femtosecond optical pulse in a monomode
optical fiber.

In this paper, we consider the following perturbation HNLS equation

iut + uxx + (|u|2 − 1)u
= iε

[
αu + β1uxxx + β2(|u|2u)x + β3(|u|2)xu + Γ

] (2)

with periodic boundary conditionu(x+2π, t) = u(x, t).Where u = u(x, t) is a complex-
value function of two real variables t and x, α, β1, β2, β3 and Γ are real parameters (α >

0,Γ > 0), and ε > 0 is a small perturbation parameter. We adopt a three mode Fourier
truncation and get a six dimensional ordinary differential equations. This equations
will be considered and the persistence of the homoclinic orbits will be obtained by
Melnikov’s analysis together with the geometrical singular perturbation theory.
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2. The Fourier Truncation of the Perturbation HNLS Equation

Suppose that the equation (2) have a solution with the following type

u(x, t) =
1√
2
a(t) + b(t) cos x + c(t) sinx. (3)

where a, b, and c are complex. Inserting (3) into the perturbed HNLS equation (2) and
neglecting the higher Fourier modes yields
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|c|2 − 1)a +
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(ab∗ + a∗b)b +
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2
(ac∗ + a∗c)c

=iε[αa +
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2
β3b(ac∗ + a∗c)− 1

2
β3c(ab∗ + a∗b) +
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2Γ]
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b +(
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(β2 + 2β3)(|b|2 − |c|2)c] + iε(αb− β1c) (4)
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(β2 + 2β3)(|b|2 − |c|2)b] + iε(αc + β1b).

From (4) the unperturbed equations are obtained by setting ε = 0
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By inspection, we see that the unperturbed equations are invariant under the following
coordinate transformations

(a, b, c) → (−a, b, c); (a, b, c) → (a,−b,−c). (6a,6b)

We want to describe the invariant manifold structure and phase space geometry of (5),
we also want ultimately to utilize the generalized Melnikov theory described in [1]. For
these purpose, we rewrite the equations (4) in the appropriate form by introducing the
following coordinate transformation

a = ρ(t) exp{iθ(t)}
b = [x1(t) + ix2(t)] exp{iθ(t)} (7)

c = [y1(t) + iy2(t)] exp{iθ(t)},


