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Jia Yueling
(Academy of Mathematics and System Sciences, CAS,

Beijing, 100080, China.
E-mail: yljia@mail.amss.ac.cn)

(Received Nov. 11, 2002)

Abstract The Cauchy problem for the generalized Korteweg-de Vries-Burgers
equation is considered and the local existence and uniqueness of solutions in Lq(0, T ;Lp)
∩ L∞(0, T ; Ḣ−s)(0 ≤ s < 1) are obtained for initial data in Ḣ−s. Moreover, the local
solutions are global if the initial data are sufficiently small in critical case. Particu-
larly, for s = 0, the generalized Korteweg-de Vries-Burgers equation satisfies the energy
equality, so the initial data can be arbitrarily large to obtain the global solution.
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1. Introduction

The subject of this paper is the Cauchy problem for the generalized Korteweg-de
Vries-Burgers equation

∂tu− ν4u +
n∑

k=1

∂3u

∂x3
k

+ F (u) = 0, (1.1)

u(x, 0) = u0(x), (1.2)

where x ∈ IRn, t > 0, and ν is a fixed non-negative constant, 4 denotes the Laplacian
on IRn. Denote F (u) = ∇ · f(u), where

f(u) = (f1, f2, ..., fn), fk ∈ C1, fk(0) = 0, |f ′k(u)| ≤ C|u|α, (k = 1, ..., n). (1.3)

This equation, used as a classical model on long wave propagation, arises in modeling
unidirectional propagation of planar waves in observing interaction of nonlinearity,
dispersion and dissipation phenomena.
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In the case n = 1, there are some recent considerations (see [1, 2]) to the following
problem:

∂tu− ν∂2
xu + ∂3

xu + u∂xu = 0, (1.4)

u(x, 0) = u0(x). (1.5)

The result of existence, uniqueness, continuous dependence and smoothness of solutions
for (1.4) and (1.5) was established by Bona and Smith [3] under the hypothesis that
u0 ∈ Hs(IR), where s > 2. A classical perturbation argument allows us to weaken this
assumption to s ≥ 0. In [4] a general case was dealt with. G.Karch [2] showed that
(1.4) and (1.5) have a unique mild solution u ∈ C([0,∞);L2(IRn)) if u0 ∈ L2(IRn). For
any s > 0, it belongs to Cloc((0,∞);Hs(IRn)). Moreover, u ∈ Cloc((0,∞);W l,1(IRn))
for each non-negative integer l if u0 ∈ L1(IRn). G.Karch Also investigated the behavior
of the solution to the Cauchy problem (1.4) and (1.5) as t tends to infinity.

In the present paper, we study the solution of (1.1) and (1.2). First, we shall give
some space-time dual estimates for the solution of linear generalized Korteweg-de Vries-
Burgers equation. Moreover, we establish the local and global existence and uniqueness
of the solution of (1.1) and (1.2).

We construct a suitable space Lq(0, T ;Lp), for some p and q, in which there is a
unique local solution of (1.1) and (1.2). It is necessary to point out that the semigroup
of the solution for the generalized Korteweg-de Vries-Burgers equation has two semi-
groups’ properties in which one is the semigroup of the solution for parabolic equation,
and the other is the one for Schrödinger equation. Each semigroup has its own pecu-
liar properties. The global existence of solution relies upon a delicate balance between
these two semigroups and the growth of the nonlinearity. In the sequel, we will show
the local and global existence and uniqueness of solution of the generalized Korteweg-de
Vries-Burgers equation for the Cauchy data in Ḣ−s(0 ≤ s < 1).

Notations Let Lp := Lp(IRn)(1 ≤ p ≤ ∞) denote the Lebesgue space on IRn,
Lq(Lp) := Lq(0, T ;Lp(IRn)) is the space-time Lebesgue space with norm ‖ · ‖Lq(Lp). We
define

A(t) := F−1eit
∑n

k=1 ξ3
kF , B(t) := F−1e−νt|ξ|2F , (1.6)

where F and F−1 denote the Fourier transform and its inverse transform. The compo-
sition of A(t) and B(t) is defined by

M(t) := A(t)B(t) = F−1eit
∑n

k=1 ξ3
k−νt|ξ|2F . (1.7)

Moreover,
M∗(t) := F−1e−it

∑n
k=1 ξ3

k−νt|ξ|2F . (1.8)

Then, we define

AF (u) :=
∫ t

0
M(t− τ)F (u(x, τ))dτ =

∫ t

0
M(t− τ)∇ · f(u)(x, τ)dτ. (1.9)


