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Abstract We consider the problem of finding a compact starshaped hypresurface
in a space form for which the normalized m-th elementary symmetric function of prin-
cipal curvatures is a prescribed function. In this paper the conditions for the existence
of at least one solution to a nonlinear second order elliptic equation of that problem are
established in case of a space form with positive sectional curvature.
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1. Introduction

Let Rn+1(1), n ≥ 2, be a space form of sectional curvature 1 and m an integer,
1 ≤ m ≤ n. In this paper we establish the conditions for the existence of a smooth
hypersurface M in Rn+1(1) which is starshaped relative to some point O and whose
m-th mean curvature Hm = ψ|M , where ψ is a given function in Rn+1(1). Here, by the
m-th mean curvature we understand the normalized elementary symmetric function of
order m of principal curvatures λ1, ..., λn of M , that is,

Hm =
1

(n
m)

∑
i1<...<in

λi1 · · ·λim .

The proof of the main result uses a priori estimates obtained in preceding paper [1] and
degree theory for nonlinear elliptic partial differential equations developed by Yan Yan
Li [6]. We refer the reader to [1] for the introductory material, including derivation of
the required partial diffrential equations, and some history of the problem.
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We now state the main result of this paper. First, we describe in a convenient form
the Riemannian space Rn+1(1). Let Sn+1 be a unit sphere in Euclidean space Rn+2

and h the standard metric on Sn+1 induced from Rn+2. Let O be a point in Sn+1,
Sn+1

+ the open hemisphere with the pole O, and TO the hyperplane tangent to Sn+1

at O. In a natural way TO can be identified with the usual Euclidean space Rn+1 with
a Cartesian coordinate system x = (x1, ..., xn+1) with origin at O. Using the inverse of
the exponential map from TO to Sn+1

+ , we may pull the metric h from Sn+1
+ to an open

ball x2
1 + ...+x2

n+1 < π/2 (= Bn+1) in TO with center at O. The space (Bn+1, h) is the
Rn+1(1). Obviously, it is isometric to Sn+1

+ .
Introduce in Rn+1(1) polar coordinates (u, ρ), where for a point x ∈ Rn+1(1) ρ is

the geodesic distance from O to x and u is a point on a standard unit sphere Sn in
Rn+1 centered at O defining the direction of the geodesic from O to x.

The metric h in these coordinates is given by

h = dρ2 + sin2 ρe, 0 ≤ ρ < π/2, (1)

where e is the standard metric on the unit sphere Sn induced from Rn+1.
We consider smooth hypersurfaces in Rn+1(1) which are starshaped relative to the

origin O and do not pass through O, that is, such hypersurfaces are radial graphs over
the sphere Sn in Rn+1(1) of positive smooth functions z(u), u ∈ Sn.

Theorem 1.1 Let 1 ≤ m ≤ n and ψ(x) a positive C∞ function in the annulus
Ω̄ ⊂ Rn+1(1), Ω̄ : u ∈ Sn, ρ ∈ [R1, R2], 0 < R1 < R2 < π/2. Suppose ψ satisfies the
conditions:

ψ(u,R1) ≥ cotmR1 for u ∈ Sn, (2)

ψ(u,R2) ≤ cotmR2 for u ∈ Sn, (3)

and
∂

∂ρ

[
ψ(u, ρ) cot−m ρ

]
≤ 0 for all u ∈ Sn and ρ ∈ [R1, R2]. (4)

Then there exists a closed, C∞, embedded hypersurface M in Rn+1(1) , M ⊂ Ω, which
is a radial graph over Sn of a function z and

Hm(λ1(z(u)), ..., λn(z(u))) = ψ(u, z(u)) for all u ∈ Sn. (5)

This theorem extends to an arbitrarym, 1 ≤ m ≤ n, the analogous result established
by Oliker in [8] for m = n. In Euclidean space an analogous result for functions
generalizing elementary symmetric functions of principal curvatures was established by
Caffarelli, Nirenberg and Spruck [3]. It should be noted that in contrast with the cases
studied in [3] and [8] where the usual continuity method was applied to prove existence,
we have to use here the special degree theory developed in [6]. The reason for this is that
the continuity method requires (among other things) that the corresponding linearized
equation be invertible on any admissible solution and this result is not available in


