## HÖRMANDER'S INEQUALITY FOR ANISOTROPIC PSEUDO-DIFFERENTIAL OPERATORS

Fabio Nicola (Dipartimento di Matematica, Università di Torino, Via Carlo Alberto, 10, 10123 Torino, Italy.) (E-mail: nicola@dm.unito.it) (Received July 19, 2002)

**Abstract** We prove a generalization of Hörmander's celebrated inequality for a class of pseudo-differential operators on foliated manifolds.

Key Words Pseudo-differential operators; lower bounds; inequalities.
2000 MR Subject Classification 35S05.
Chinese Library Classification 0175.231.

## 1. Introduction

In this note we are concerned with the problem of establishing lower bounds for anisotropic pseudo-differential operators defined on certain foliated manifolds. Precisely, the symbol class we consider is defined in terms of the weight function  $[\xi]_M =$  $\sum_{j=1}^{n} |\xi_j|^{\frac{1}{M_j}}, \xi \in \mathbb{R}^n$ , where  $M = (M_1, \ldots, M_n)$  is a fixed *n*-tuple of integer numbers, see Definition 2.1 below. In other words, we are fixing a so-called quasi-homogeneous structure, cf. Melrose [1]. The corresponding class of pseudo-differential operators was studied, among others, by Hunt and Piriou [2],[3], Parenti [4], Parenti and Segala [5], Segala [6], Lascar [7], Rodino and Nicola [8], Nicola [9], [10] (see also Robert [11] for a global version in  $\mathbb{R}^n$ ). Such operators are within the Beals-Fefferman calculus and within the Weyl-Hörmander calculus, so that products, symbolic calculus, construction of parametrices, etc. run as standard. The main feature is instead expressed by their invariance under suitable changes of variables. Was Parenti [4] who first specified the class  $\mathcal{G}_M$  of allowed diffeomorphisms: they are those diffeomorphisms  $\phi$  whose transposed Jacobian matrix  $d\phi^t$  is in a particular subgroup  $GL_M(n,\mathbb{R})$  of the group  $GL(n,\mathbb{R})$  of real invertible  $n \times n$  matrices, cf. the next Definition 2.8. So, we can transfer the definition of anisotropic operators on those manifolds X which have a  $\mathcal{G}_M$ structure, see, e.g., Reinhart [12]. We stress that such manifolds are, in particular, foliated manifolds. In [8],[9], we considered a vector bundle  $T_M^*X$  on such a manifold X in order to give an invariant meaning to the quasi-homogeneous principal symbol of an anisotropic classical operator, i.e. an operator whose symbol has an asymptotic

expansion in quasi-homogeneous terms. The vector bundle  $T_M^*X$  is, in a natural way, a foliated manifold. Furthermore, as we shall see, each leaf is canonically a symplectic manifold.

Let us now come to the aim of this note. Consider a classical, formally self-adjoint and properly supported anisotropic pseudo-differential operator A on X. We know that when the quasi-homogeneous principal symbol  $a_m$  is positive quasi-elliptic, the classical Gårding Inequality holds. If  $a_m \ge 0$  only, Segala [6] proved the so-called Sharp Gårding Inequality

$$(Au, u) \ge -C_K \|u\|_{\frac{m}{2} - \frac{1}{2}}^2 \quad \forall u \in \mathcal{C}_0^{\infty}(K),$$
(1.1)

for every compact subset  $K \subset X$  (here  $\|\cdot\|_s$  denotes the norm in weighted Sobolev spaces modelled on our operators). Of course, (1.1) can be seen as a particular case of the general Sharp Gårding Inequality due to Hörmander [13], Theorem 18.6.7, in the frame of the Weyl calculus.

So, one expects that for anisotropic operators with double characteristics the lower bound (*Hörmander's Inequality*)

$$(Au, u) \ge -C_K \|u\|_{\frac{m}{2}-1}^2 \quad \forall u \in \mathcal{C}_0^{\infty}(K)$$
 (1.2)

holds, under hypotheses on the principal and subprincipal symbol of A and geometric assumptions on the characteristic set  $\Sigma \subset T_M^*X \setminus 0$ .

Indeed, in the homogeneous case, i.e.  $M_j = 1$  for all  $j = 1, \dots, n$ , Hörmander [14] proved that, supposing

(i)  $\Sigma := \{(x,\xi) \in T^*X \setminus 0 : a_m(x,\xi) = 0\}$  is a smooth sub-manifold of  $T^*X \setminus 0$ ,

(ii) the canonical symplectic form  $\sigma$  has constant rank on  $\Sigma$ ,

(iii)  $a_m(x,\xi)$  vanishes exactly to second order on  $\Sigma$ ,

the lower bound (1.2) (now with the usual Sobolev norms and A in Hörmander's classes  $\Psi^m_{\rm cl}(X)$ ) is equivalent to

$$\begin{cases} a_m \ge 0 \quad \text{on } T_M^* X \setminus 0, \\ a_{m-1}^s(\rho) + \operatorname{Tr}^+ F_A(\rho) \ge 0 \quad \forall \rho \in \Sigma, \end{cases}$$
(1.3)

where  $a_{m-1}^s$  is the subprincipal symbol of A and  $\operatorname{Tr}^+ F_A(\rho)$ , for  $\rho \in \Sigma$ , is the positive trace of the fundamental matrix  $F_A(\rho)$ , defined by

$$\frac{1}{2}(\operatorname{Hess} a_m(\rho)v, v) = \sigma(v, F_A(\rho)v) \quad v \in T_\rho T^*X, \ \rho \in \Sigma.$$

Explicitly  $\operatorname{Tr}^+ F_A(\rho) = \sum_{\mu>0} \mu$  with  $i\mu$  in the spectrum of  $F_A(\rho)$ .

We observe that assumptions (i),(ii),(iii) play an essential role: without them one can only prove the equivalence of (1.3) and the weaker Melin Inequality:

For any  $\epsilon > 0$ , for any  $\mu < (m-1)/2$  and any compact  $K \subset X$ , there exists  $C_{\epsilon,\mu,K}$  such that

$$(Au, u) \ge -\epsilon \|u\|_{\frac{m-1}{2}}^2 - C_{\epsilon,\mu,K} \|u\|_{\mu}^2 \quad \forall u \in \mathcal{C}^{\infty}(K).$$