SPIKE-LAYERED SOLUTIONS OF SINGULARLY PERTURBED QUASILINEAR DIRICHLET PROBLEMS ON BALL*

Zhang Zhengce, Li Kaitai and Guo Xiulan (College of Sciences, Xi'an Jiaotong University, Xi'an, 710049, China) (E-mail: zhzhczhlp@sina.com (Zhang Zhengce); E-mail: ktli@mail.xjtu.edu.cn (Li Kaitai)) (Received May 19, 2002; revised Oct. 18, 2002)

 ${\bf Abstract}$. We consider the singularly perturbed quasilinear Dirichlet problems of the form

$$\begin{cases} -\epsilon \Delta_p u = f(u) \text{ in } \Omega \\ u \ge 0 \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega \end{cases}$$

where $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du), p > 1, f$ is subcritical. $\epsilon > 0$ is a small parameter and Ω is a bounded smooth domain in R^N $(N \ge 2)$. When $\Omega = B_1 = \{x; |x| < 1\}$ is the unit ball, we show that the least energy solution is radially symmetric, the solution is also unique and has a unique peak point at origin as $\epsilon \to 0$.

Key Words Quasilinear Dirichlet problem; peak point; unique.
2000 MR Subject Classification 35J65, 35B25.
Chinese Library Classification 0175.25.

1. Introduction

In this paper we study the following singularly perturbed problem

$$\begin{cases} -\epsilon \Delta_p u = f(u) & \text{in } \Omega \\ u \ge 0 & \text{in } \Omega, \ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (1.1)

where p > 1, $f(u) = g(u) - u^{p-1}$, Ω is a bounded smooth domain in R^N $(N \ge 2)$. $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du)$, $Du = (D_1u, \dots, D_Nu)$, $D_i u = \frac{\partial u}{\partial x_i}$, $\epsilon > 0$ is a parameter. The function $g: R \to R$ satisfies the following assumptions.

(g1)
$$g \in C^1(R)$$
, $g(t) \equiv 0$ for $t \leq 0$ and $g(t) = \bigcirc (t^\beta)$ as $t \to 0$ with $\beta > p-1$.
(g2) $g(t) = \bigcirc (t^q)$ as $t \to +\infty$, where $p-1 < q < \frac{Np}{N-p} - 1$ if $p < N$ and $p-1 < q < \infty$ if $p \geq N$.

^{*}Subsidized by the Special Funds for Major State Basic Research Projects G 1999032801 & NSFC 10001028

(g3) $g(t)/t^{p-1}$ is strictly increasing for t > 0, and $\lim_{t \to +\infty} g(t)/t^{p-1} = +\infty$.

(g4) If $G(t) = \int_0^t g(s)ds$, then there exists a constant $\theta \in (0, 1/p)$ such that $G(t) \leq \theta t g(t)$ for $t \geq 0$.

From (g1) and (g3), it should be observed that there exists a unique \bar{t} satisfying $\bar{t}^{p-1} = g(\bar{t})$. To state the last condition, we need to consider the problem in R^N :

$$\begin{cases}
-\Delta_p w = g(w) - w^{p-1} \text{ and } w > 0 \text{ in } R^N \\
w(0) = \max_{x \in R^N} w(x) \text{ and } w(x) \to 0 \text{ as } |x| \to +\infty
\end{cases}$$
(1.2)

(g5) The problem (1.2) has a unique radially symmetric solution, and it is nondegenerate.

We note that the function $g(t) = t^q$ satisfies assumptions (g1)-(g5) if $p - 1 < q < \frac{Np}{N-p} - 1$ (see Theorem 3 and its Corollary in [1] and Appedix C in [2] for detail).

The study of the solutions to the related equations has received considerable attention in recent years. The equation (1.1) with p=2 is known as the stationary equation of the Keller-Segal system in chemotaxis (see [3] and the references therein). It can also be seen as the limiting stationary equation of the so-called Gierer-Meinhardt system in biological pattern formation, see [4] for more details.

We define an "energy" $J_{\epsilon}: W_0^{1,p}(\Omega) \to R$ associated with (1.1) by

$$J_{\epsilon}(u) = \frac{\epsilon}{p} \int_{\Omega} |Du|^p dx - \int_{\Omega} F(u) dx.$$

The well-known mountain-pass lemma due to Ambrosetti and Rabinowitz(see[5]) implies that

$$c_{\epsilon} = J_{\epsilon}(u_{\epsilon}) = \inf_{l \in \Gamma} \max_{s \in [0,1]} J_{\epsilon}(l(s))$$

is a positive critical value of J_{ϵ} , where Γ is the set of all continuous paths joining the origin and a fixed nonzero element $e \in W_0^{1,p}(\Omega)$ such that $e \geq 0$ and $J_{\epsilon}(e) = 0$. It turns out that c_{ϵ} is the least positive critical value (see Lemma 2.2 below). Hence a critical point u_{ϵ} of J_{ϵ} with critical value c_{ϵ} is called least-energy solution (or mountain-pass solution) of (1.1).

The corresponding problem for the case p=2 and more general f(u) has been studied in [2,3,6] (for the Neumann problem), Lin, Ni and Takagi showed for ϵ sufficiently small the least-energy solution has only one local maximum point x_{ϵ} and $x_{\epsilon} \in \partial \Omega$. Moreover, $H(x_{\epsilon}) \to \max_{x \in \partial \Omega} H(x)$ as $\epsilon \to 0$, where H(x) is the mean curvature of x at $\partial \Omega$. In [7-9] (for the Dirichlet problem), Ni and Wei obtained that for ϵ sufficiently small, the least-energy solution u_{ϵ} has at most one local maximum and it is achieved at exactly one point $x_{\epsilon} \in \Omega$. More precisely, $u_{\epsilon}(\cdot + x_{\epsilon}) \to 0$ in $C^1_{loc}(\Omega - x_{\epsilon} \setminus \{0\})$, where $\Omega - x_{\epsilon} = \{x - x_{\epsilon} | x \in \Omega\}$,

$$d(x_{\epsilon}, \partial\Omega) \to \max_{x \in \Omega} d(x, \partial\Omega)$$
 as $\epsilon \to 0$.