SPIKE-LAYERED SOLUTIONS OF SINGULARLY PERTURBED QUASILINEAR DIRICHLET PROBLEMS ON BALL*

Zhang Zhengce, Li Kaitai and Guo Xiulan
(College of Sciences, Xi'an Jiaotong University, Xi'an, 710049, China)
(E-mail: zhzhczhlp@sina.com (Zhang Zhengce); E-mail: ktli@mail.xjtu.edu.cn (Li Kaitai))
(Received May 19, 2002; revised Oct. 18, 2002)

Abstract

We consider the singularly perturbed quasilinear Dirichlet problems of the form $$
\left\{\begin{array}{l} -\epsilon \Delta_{p} u=f(u) \text { in } \Omega \\ u \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \end{array}\right.
$$ where $\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right), p>1, f$ is subcritical. $\epsilon>0$ is a small parameter and Ω is a bounded smooth domain in $R^{N}(N \geq 2)$. When $\Omega=B_{1}=\{x ;|x|<1\}$ is the unit ball, we show that the least energy solution is radially symmetric, the solution is also unique and has a unique peak point at origin as $\epsilon \rightarrow 0$.

Key Words Quasilinear Dirichlet problem; peak point; unique. 2000 MR Subject Classification 35J65, 35B25. Chinese Library Classification O175.25.

1. Introduction

In this paper we study the following singularly perturbed problem

$$
\left\{\begin{array}{l}
-\epsilon \Delta_{p} u=f(u) \text { in } \Omega \tag{1.1}\\
u \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $p>1, f(u)=g(u)-u^{p-1}, \Omega$ is a bounded smooth domain in $R^{N}(N \geq 2)$. $\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right), D u=\left(D_{1} u, \cdots, D_{N} u\right), D_{i} u=\frac{\partial u}{\partial x_{i}}, \epsilon>0$ is a parameter. The function $g: R \rightarrow R$ satisfies the following assumptions.
(g1) $g \in C^{1}(R), \quad g(t) \equiv 0$ for $t \leq 0$ and $g(t)=\bigcirc\left(t^{\beta}\right)$ as $t \rightarrow 0$ with $\beta>p-1$.
(g2) $g(t)=\bigcirc\left(t^{q}\right)$ as $t \rightarrow+\infty$, where $p-1<q<\frac{N p}{N-p}-1$ if $p<N$ and $p-1<q<\infty$ if $p \geq N$.
*Subsidized by the Special Funds for Major State Basic Research Projects G 1999032801 \& NSFC 10001028
(g3) $g(t) / t^{p-1}$ is strictly increasing for $t>0$, and $\lim _{t \rightarrow+\infty} g(t) / t^{p-1}=+\infty$.
$(\mathrm{g} 4)$ If $G(t)=\int_{0}^{t} g(s) d s$, then there exists a constant $\theta \in(0,1 / p)$ such that $G(t) \leq \theta t g(t)$ for $t \geq 0$.

From (g1) and (g3), it should be observed that there exists a unique \bar{t} satisfying $\bar{t}^{p-1}=g(\bar{t})$. To state the last condition, we need to consider the problem in R^{N} :

$$
\left\{\begin{array}{l}
-\Delta_{p} w=g(w)-w^{p-1} \text { and } w>0 \text { in } R^{N} \tag{1.2}\\
w(0)=\max _{x \in R^{N}} w(x) \text { and } w(x) \rightarrow 0 \quad \text { as }|x| \rightarrow+\infty
\end{array}\right.
$$

(g5) The problem (1.2) has a unique radially symmetric solution, and it is nondegenerate.

We note that the function $g(t)=t^{q}$ satisfies assumptions (g1)-(g5) if $p-1<q<$ $\frac{N p}{N-p}-1$ (see Theorem 3 and its Corollary in [1] and Appedix C in [2] for detail).

The study of the solutions to the related equations has received considerable attention in recent years. The equation (1.1) with $p=2$ is known as the stationary equation of the Keller-Segal system in chemotaxis (see [3] and the references therein). It can also be seen as the limiting stationary equation of the so-called Gierer-Meinhardt system in biological pattern formation, see [4] for more details.

We define an "energy" $J_{\epsilon}: W_{0}^{1, p}(\Omega) \rightarrow R$ associated with (1.1) by

$$
J_{\epsilon}(u)=\frac{\epsilon}{p} \int_{\Omega}|D u|^{p} d x-\int_{\Omega} F(u) d x
$$

The well-known mountain-pass lemma due to Ambrosetti and Rabinowitz(see[5]) implies that

$$
c_{\epsilon}=J_{\epsilon}\left(u_{\epsilon}\right)=\inf _{l \in \Gamma} \max _{s \in[0,1]} J_{\epsilon}(l(s))
$$

is a positive critical value of J_{ϵ}, where Γ is the set of all continuous paths joining the origin and a fixed nonzero element $e \in W_{0}^{1, p}(\Omega)$ such that $e \geq 0$ and $J_{\epsilon}(e)=0$. It turns out that c_{ϵ} is the least positive critical value (see Lemma 2.2 below). Hence a critical point u_{ϵ} of J_{ϵ} with critical value c_{ϵ} is called least-energy solution (or mountain-pass solution) of (1.1).

The corresponding problem for the case $p=2$ and more general $f(u)$ has been studied in $[2,3,6]$ (for the Neumann problem), Lin, Ni and Takagi showed for ϵ sufficiently small the least-energy solution has only one local maximum point x_{ϵ} and $x_{\epsilon} \in \partial \Omega$. Moreover, $H\left(x_{\epsilon}\right) \rightarrow \max _{x \in \partial \Omega} H(x)$ as $\epsilon \rightarrow 0$, where $H(x)$ is the mean curvature of x at $\partial \Omega$. In [7-9] (for the Dirichlet problem), Ni and Wei obtained that for ϵ sufficiently small, the least-energy solution u_{ϵ} has at most one local maximum and it is achieved at exactly one point $x_{\epsilon} \in \Omega$. More precisely, $u_{\epsilon}\left(\cdot+x_{\epsilon}\right) \rightarrow 0$ in $C_{l o c}^{1}\left(\Omega-x_{\epsilon} \backslash\{0\}\right)$, where $\Omega-x_{\epsilon}=\left\{x-x_{\epsilon} \mid x \in \Omega\right\}$,

$$
d\left(x_{\epsilon}, \partial \Omega\right) \rightarrow \max _{x \in \Omega} d(x, \partial \Omega) \text { as } \epsilon \rightarrow 0
$$

