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Abstract In this paper, we prove the existence of solutions to anisoiropic parabolic
equations with right hand side term in the bounded Radon measure M{() and the ini-
tial condition in M (1) or in L™ space (with m “small”},
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1. Introduction and Statement of Results

The existence of solutions to nonlinear elliptic equations and parabolic equations
with measure data has been discussed in [1]-[4]. For the case of anisotropic elliptic
equations, L.Boceardo, T.Gallouét and P.Marcellini studied it in [5]. In this paper, we
will extend the analogous results of [5] for anisotropic elliptic equations to anisotropic
parabolic equations and obtain the appropriate function space for solutions. We will
consider the following anisotropic parabolic equations:
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Here 2 is a bounded open set in RN, N > 2, with smooth boundary 8Q,Q is the
cylinder 2 x (0,T), where T is a real positive number, and Z is the “latreal surface”

N % (0,T).p; >1,i=1,2,--,N.
Let a be a Carathéodory function in Q x R x RY. We assume there exist two
real positive constants o, 8 and a nonnegative function b € L'(Q), such that for every

component a; of a, almost every (z,t) € @, and for any s € R, € RY ,n e R",
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here 5 satisfies ~ = L - 1
whnere p satishes _EZ_'
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[al2,t,5,6) —a(z, t,5,9)|[f =) > 0, € 7 (1.3)

In particular, if a doesn’t depend on z,f and s, namely a(r,t,s,£) = a(g), alf) is
the vector field whose components are a;(£) = |£Pi—2¢; i =1 2y  Nps > 1.

We will specify in the stalement of the theorems the different hypotheses on f and
ug. The general case is when f and ug are the bounded Radon measures on ¢ and

respectively, we will also consider the more regular case when f and w, belong to some
Lebesgue or Orlicz space.

Definition 1.1  We will say that u is a soluti

onof (P)ifu € L0, 7; W) (), a(z,
b, Du) € LYQ) and u satisfies the equation

(P) in the lollowing weak sense;

—f uqr}’ffzdf—I—f a(r,t, u,Du}D:ﬁiﬂﬁ:f -;.'}.:ff+f @z, 0)dug (1.4}
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for every ¢ € C°°(@) which is zero in a ne

ighborhood of U (0 x {T1)
Set

Whirdigy = {ulu € P (), Doy & s CF 5 I SN [ (1.5)

Define
“EHwi.fp,-J.:m = || Dsue| i gy + [ullzeegny,  Wu € Whird(g) (1.6)

WHP(0) becomes reflexive Banach space. We will denote by W, "i?":'{ﬁ}l the closure
of C§°(£2) relative to the norm (1.6) in WLPi(()). Suppose
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We now state the main results of this paper.
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Theorem 1.1  Assume (1.1)-(1.3) and (1.7) f

h et gl
old, let g < N i_N-r—l

feEM(Q), we M(02) (1.8)

where M(Q) and M (£2) denote the s

pace of bounded (finite) Radon measure on & and
¥ respectively,

Then there exists a solution of the problem (P) such that
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