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Abstract In this article we prove that the following NLS it = toe —glulP o, g >
0,z ¢ > 0 with either Thirichlet or Robin boundary condition at @ = 0 is well-posed.
LP+! decay estimates, blow-up theorem and numerical results are also given.
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1. Introduction

Boundary value problems for important evolution equations often are called forced
problems. Often these problems have significant physical implications. For example,
in ionospheric modification experiments, one directs a radio frequency wave at the
jonosphere. At the reflection point of the wave, a sufficient level of electron plasma
waves is excited to make the nonlinear behavior important [1,2]. This may be described
by the NLS equation with the eubic nonlinear term and a nonlinear boundary condition

{ iqﬁ = *?1::': :|: Elqliq, Ert = R+
qlz,0) = h(z),q(0,t) = g{t)

where Rh(z) decays for large ¢ and the given functions h(z), g(t) have appropriate
smoothness, and satisfy the necessary compatibility conditions. For (1.1), global ex-
istence, well-posedness and blow-up result were established when h € H 20,00),Q €
C?[0, 0o [3,4].

In this paper, we study the following NLS with a general nonlinear term — glulP u
forp> 1,9 >0

(1.1)

{im = upp — glulP~lu, x,1€ R* (1.2)

u(z, ) = h(zx)
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with either Dirichlet boundary condition «(0,t) = @Q(f} or Robin boundary condi-
tion ux(0,%) + cu(0,t) = R(t), where o is real. Under the assumption that h ¢
H?*[0,00),Q or R € C?[0,00), there exists a unique global classical solution u &€
C1([0, 00}, LE[0, o)) M CO([0, o0), HE[0, oo))[3]. Let P(t) = u.(0,t), the following three
identities can be easily verified (in the case of Robin boundary condition, P is replaced
by B — a)):

8, fn lul?dz = —2Im(PQ) (1.3)
d -/-m (|u 1% + -zi|u|p+l) dr = —2RePq) (1.4)
Jo = p+1 : '
and
9 f " winds = —QQ +i|P| — i—3_|gp+t (1.5)
i 0 ] P+ 1 '

In the following, we prove well-posedness for the above problem with either bound-
ary condition, give L' decay estimates via a pseudoconformal identity and present
blow-up result.

2. Well-Posedness Results

Consider {1.2) for 0 < ¢ < T and assume that for some M > 0, 1@l 207 < M or
| Bl 1] < M, depending on the type of boundary condition. Also we assume that
|&]] weR+y = M. For the Dirichlet boundary value problem, assume that u, v solve (1.2)
- with boundary-initial data (Q, up) and (@, vg) both lying in C’E[D,T] x HY(R*) = X.
By global existence theorem, there exists a constant A > 0 that only depends on A
and T such that [lul|g g+ < Afor ¢ € [0,7] thus ||ulle < collw' )13 lullZ < A. Clearly,
the map f: X — ¥ = YL [0,T))nC H?, [0, T via(Q, ug) — u is well-defined. Let
z=(Q,up) 21 = (G, v0) € X, ||zl x = max{||Qllc2po.r: | Bll2.2} < M, ||zl x < M and

w=Au=v—u,Az=2—z2=[AQ,wy) = (D1 — Q,v0 — up) (2.1)

Since v = w + u satisfies (1.2) as well, one has i{wy, + ) = Wer + vz — glw +
ulPT (1w +u) where w satisfies the following variable-coefficient, initial-value, boundary-
value problem:

{ Wy = Wer — glw + ulPH w + ) + wpe — Ty = W + Glw, ) (2.9)

w((,t) = AQ,wo = vp — up
Let AP =P — P =u,(0,f) — u;(0,¢). From (2.2) one has

10 |w|? = fwed + fwd, = 2Im(wea® + TG (w, t)) (2.3)




