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Abstract In this paper, the existence and uniqueness of the time-periodic solu-
tions to the Ginsburg-Landan-BBM equations are proved by using a prieri estimates
and Leray-Schander fixed point theorem.
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1. Introduction

In order to understand the spatial behavior of the solutions to the Ginzburg-Landan
equation coupled with BBM equation, in this paper we will consider the existence and
uniqueness of the time-periodic solutions for the following systems:

g+ pe — (o +don)egs + (B +if2)|e|?s — ifne = g (1.1)
ne + f(n)e + 90 = 2Ny — Mgy + |22 =0 (1.2}
elx+1,t) =e(z,t), nle+1,t)=n(z1) (1.3)

with the w-periodic conditions
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where £{x, ) is a complex function, n(x, ) is a real scalar function, fin) is a nonlinear
function, g, ey, @1, 6,7, v, 1 = 0 ave real constants, g(x, t) is a given real function.

This problem describes the nonlinear interactions between the Langmuir wave and
the ion acoustic wave in plasma physics, ¢(z,t) denotes electric field, n(x,t) is the
density [1-3]. The global existence of the smooth solutions for the problem (1.1)-(1.3)
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with the initial conditions has been abtained by Guo and Jiang in [4]. Here, by nsing
a priort estimates and Leray-Schauder fixed point theorem, we will show the existence
of approximate solutions lgar,np) of the problem ( L1)-{1.4}, establish the uniform
boundedness of the norm |z (t)] and [rear ()], by standard compactness arguments to
get the convergence of the approximate solutions, obtain the existence and uniqueness
of the periodic solutions for the problem (1.1)-(1.4).

2. Existence of Approximate Solutions

Let ¢;(x)(7 = 1,2, ) be the normalized eigenfunctions of the equation 1w, + Aw =
0, with the periodic condition corresponding to eigenvalues A;(j = 1,2, ). {¢;} forms
a4 normalized orthogonal system of eigenfunctions.

Let Wy = Span{p1, ¢2,-- -, ¢n}. By [5], we know that for any
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there exists a unique w-periodic solution
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for the following linear equations

{5.""-'f T HEN — (n:l =R I:':*-'Z]EN;I::: o ﬂr‘i’j} == '["':.Sl ik iﬁ?}l“fu’lgu.ﬁi +E'§H-,"'J'UF'J.~ ':I'_i'] {2-[:'
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ez 40 #) = enlz,t), nylz+lLi) = o o (2.3)
En(t+w) =en(t), np(t+w) =ny(t) (2.4)

For the mapping F : (upy, Uy ) — (ex,np) is continuous and compact in C(w, Wy x
CHw, Wy, we may use Kato H.[5] idea to prove the existence of the solution for
problem (2.1)-(2.4) through the Leray-Schauder fixed point theorem. It is sufficient to
show the boundedness

sup (llex (Ellge + lnn ()] g2) < €
L

for the possible solution of (2.1)-(2.4) with the nonlinear terms in the right side of (2.1)
and (2.2) multiplied by A(0 < A < 1), where C is a constant independent of A. That is
we shall consider about the following equations:

(ene + pen = (01 + dom)e jae + MO+ iB) e |Pen — iAbnyen — g, i) = 0 (2.1a)
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enlz + 1Lt} =en(x,t), nylc+ Lt) = ny(x, 1) (2.3a)
snlt+w) =en(t), nylt+w)=np(t) (2.4a)




