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Abstract In this paper, a fundamental solution at the origin and mean value
theorem of generalized Greiner operator are given. Then the Hardy type inequality and
some Pohoraev type identities are proved. As their applications, some nonexistence
results of semilinear nonelliptic equation and unique continuation are discussed,
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1. Introduction

In recent decades the study of properties of the kohn-Laplacian Ay (which satisfy
the Hérmander's condition of hypoellipticity see [1]) on the Heisenberg group H™ has
made great advances. Folland has given the fundamental solution of —A g with singu-
larity at the origin, see [2]. Garofalo and Lanconelli gave Hardy type inequality for A g
on the base of the work of Folland, and considered the unique continuation see (3], In
[4], Pohozaev type identity on Ay was deduced and used to obtain the nonexistence
of semilinear subelliptic equation. For generalization see [5].

The aim of this paper is to give some interesting properties of generalized Greiner
operator:

L=-3(x]+Y} (1.1)
i=1
e B k=39 0y o O T i A
where X; = Bz, + 2ky;|z| Et’ﬂ = EE; — 2kzj|z| a0 = 2+ V-ly;,d =

Lica=ones = fag, v ,2n) € C™t € R,k > 1. We note that the nonelliptic operator L
becomes Ay in the case £ = 1, and when k = 2,3,---, L is first introduced by Greiner
in the study of the boundary Cauchy-Riemann complex, see [6]. It is well-known that
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if k > 1, the vector flelds {X;, Y;} are not the basis for any Lie group and L does not
possess the translation invariance. But clearly L is a quasihomogencous PDOs ([7,8]).
We will establish the fundamental solution at the origin of Greiner operator, Hardy type
mequality and Pohozaev type identity associated to the vector fields {X;, Y5 i=1,0m)-
To do so, we need to give some preliminary results on the operator L and vector fields
{X;, ¥;} which generalize ones on Ay

The generalized gradient of L is defined as

V= (K Yagrr 35) (1.2)
A natural family of anisotropic dilations attached to L is given by
6o(2,t) = (rz,v™t), >0 (1.3)

It 15 casy to see that
L{fu) = r26,(Lu) (1.4)

Le., L is homogeneous of degree two with respect to 6,
Consider the smooth vector field on B+

Y, l .
Ko L (‘rfdfcj +g;.5qj) —I—Eﬁ:::E (1.5)

It is readily verified that X is the generator of the group {6 }rw0.
Denote by A a (2n+ 1) x (2n+1) S} rmmetrical matrix, whose elements are: a,; =

e = 1,0+ ,20; @anyy 4 = Ekjr;J|z|% g S T T (R HE.E::I:J-|3|% E”u -
Loy €ont1 2nt1 = 457 2|* 72, then L can be represented as
L = div(AV) (1.6)
where ¥V means the Euclidean gradient.
It is easy to checlk that AVu - Vo = Vou . Vv, therefore
AVy - Vo = VudVy (1.7)
Note that
dl6,.(z,t)) = rYdzdt
where dzdt denotes the Lebesgue measure on 2% and
() = 20+ 2k (1.8)

The distance function related to {X;, ¥}} is given by

d(z,t) = (|z|™ + ¢?) % (1.9)



