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Abstract In this paper, we consider the initial and mixed boundary value prob-
lems for the semiconductor equations with avalanche term, the uniqueness of the weak
solution for the semiconductor equation has been proved.

Key Words  Semiconductor equations; avalanche term; weak solution; uni{iue-
Ness.

1991 MR Subject Classification 35099,

Chinese Library Classification 017529,

1. Introduction

Let & be a bounded domain in B*, 1 < n < 3. Set Qr = (0.T) = G. Suppose that
dG = p Uy, where I'p and I'y are pairwise disjoint and I'p 15 closed and possesses
positive surface measure. Moreover, v(xg) denotes the outer unit normal at z; € 8G.
In this paper we study the following system of nonlinear partial differential equations
that describes the transport of electrons and holes in a semiconductor device

g

¢ — div i = =Rlu1, u2) + a (V)] + ax(VY) L], i =1,2 (1.1)

— V- laVy) = f+ 1 — g (1.2)

with boundary conditions

iy d; 2 i e
|:"'J'*r,1 fllr}:llru '_ Euh@jl E T == a: ' = {13}
and initial conditions
ui(0,z) =wupi(z), z€G (1.4)
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The unknown functions u, 4y and 1 denote the free electron carrier concentration, the
free hole carrier concentration and the electrostatic potential. f is the net density of
lonized impurities. B(u;, uz) = riuy, us)(uius —:ﬂ.f},_ Ji = DV + quu MV, gy = —1,
q2 =1, Dy = Di(x, Vob), M; = M;(z, Vip). The coefficients ey and om represent the ion-
lzation rates for electrons and holes, respectively. The term oy (Va)[|J,| + o ( Vil )|J5
models the generation of charged particles due to impact ionization (avalanche gen-
cration of electrons and holes). In [1, 2], the authors proved the local existence of a
weak solutions to (1.1)-(1.4) (R =0,n = 3,2). In [3], the existence of weak solutions
15 proved for space dimensions=1, 2, 3, and the uniqueness of solutions is showed in
the case of one space dimension, The aim of this paper is to prove the uniqueness of
solutions to (1.1}-(1.4) in the case n (n < 3] space dimension.

2. Notations and Assumption

Using the standard notation we denote by H'(G) the Sobolev Space. A norm in a
Banach space £ is denoted by | - [[z. The norm in the space L?, p = 1 1s, for short
denoted by || - ||, both for the space L? (G) and LP(G;B™), |- |l = Il - ||l2. We introduce
some function spaces LL(G) = {v:v € LYG), v > 0 ae. in GHY ={v:ve HY(F),
vlr, = 0}, ¥* be dual space of ¥. We denote by (-,-) the scalar product in L(G)
and (-,-} the duality pairing between Y* and V. In this paper we shall work on the
following assumption that

(Hi) # € HY(G) N LP(G), ¢ € HY(G) N L=(G):

(Hz) f = f(z) € L(G), nf = n}{z) € LE(G).n) = na:

(H3) a is a positive constant; the diffusion eoefficients D; = Dyix, y) and the mobili-
bies M; = M;(x,y) satisfy the following: (i) I; and M; are measurable in = € G, contin-
nous in y € R, and there are positive constants D; and d; such that dy < Dilz,y) < D
tor all (z,y) € G x R*; (ii) M; (i = 1,2) are of the form M;(z,y) = u; + Bilz, ),
(x,y) € G x R"; where u;(i = 1,2) are nonnegative constants, and there exists a
constant By such that the functions B; satisfy

|Bi(z,y)yl < By, (z,y) € G x R

(Hy) 7 Rﬂ — fiy 15 Lipschitzian;

(Hq)" R is the Shockley-Read-Hall term

Riuy,ug) = Tu+?‘1ul[]f_ e (wi1uz — n?), where b > O,r; =0 (F = 0,1,2) are
positive constants;

(Hs) ug; € L{iﬂl:'l?j, et

(Hg) oi(y) € C(R™), 0 < ai(y) < ap; = const < 4oo, y € R

(H7) Let {Hs) hold, and onluy + g < rlug, ) < Al + g + o), Ui E R, ma, o
are positive constants;

(Hg) Let (Hs), (Hg) hold, and Dz, y) are positive constants Doy Bile, )y, cu(y)

satisfies globally Lipschitz condition.




