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Abstract The system of balance laws of mass, momentum and energy for one-
dimensional nonlinear thermoviscoelastic material wich fixed and thermally insulated
endpoints is considered, and the problem of whether there exists a plabally delined
smooth thermoviscoelastic process is solved, Le.. there exists such a process.
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1. Introduction

In this paper we will consider the existence of the global smooth process fo one-
dimensional nonlinear thermoviscoelastic materials with fixed and thermally insulaled
endpoints. This is an open problem proposed by Dafermes in [17.

The Lagrangian referential form of conservation laws of mass, momentum, and
energy for one-dimensional materals with the referencial densicy pg = 1 is
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and the second law of thermadynamics is expressed by the Clausius-Duhem inequality

a+(2), 20 (1.2

L

where w, v, o, e, 1, € and ¢ denote orderly deformation gracdient, velocity, stress, internal
energy, special entropy, temperature and heat flux. u, e and ! may take positive values.

For one-dimensional, homogeneous, thermoviscoelastic materials, internal energy,
stress, entropy and heat flux are given by constitutive relations
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which. according to (1.2), must satisfy
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where 1 = & — #7 is the Helmholtz free energy.

We consider here a body with reference configuration the interval [0, 1] with fixed
endpoints and thermal insulation, i.e.,

p(0.2) =w(1, 8 =0 30

1.5]
g(0,t) = q(1,¢) =0, .20 (1.5)

The initial data of deformation gradient, velocity and temperature are expressed by
u(x, 0) = uolz) > 0, v(z,0) = wo(z), 8(z,0) = y{z) > 0 (1.G)

In 1982, Dafermos [1] considered the system (1.1) with the following boundary
conditions of stress free and thermal insulation:

g{0,t) =q(1,£) =0, =0

(1.7)
a0t} =c(0it)=0, t=0

Using Leray-Schauder fixed point theorem, he got the global smooth process to the
problem (1.1}, (1.6)-{1.7). Recently, mainly based on the techniques in Dafermos and
Hsiao [2] and Dafermos (1], Jiang [3] established the smooth solution for (1.1} with dash
pot or stress free and constant temperature at endpoints. The initial value problems
are considered by Zheng and Shen [4] and Kim [5]. As for the large time behavior of
classical solutions to (1.1) is concerned, the nonlinear phenomena of phase transition
of solutions was found by Hsiac and Luo [6], and by Hsiao and Jian [7], which is an
extension of the results obtained by Andrews and Ball [8]. When the material is gas,
similar study was made, such as [9-15] ard references cited there.

Here, we will show the global existence of smooth solutions to (1.1, (1.5}-(1.6)
for the same solid-like material as that in Dafermos [1]. The first step to establish the
global classical solution is to get the o priori bound of the deformation gradient w, if we
have no restriction on the behaviors of é(w, 0), plu, 8), k(u,8) at v =0 pand u = 400,
This can be guaranteed in Dafermos [1] by the property of plu,d), ie. (1.11), and
in Jiang (3] with other monotone request on p(w, 6 with respect to the deformation

gradient w. In our case, however, the techniques used in [1], [3] do not work, which .

means that further study on the property of the system is needed.
Following Dafermos [1], we consider the global existence problem of solution to
(1.1}, (1.5)-(1.8) for linearly viscous material

e=é(u,f), o= —plu,d) + jpluvg, g= —k(u, 0)8, (1.8}



