ON THE EXISTENCE OF GLOBAL OSCILLATION WAVES FOR A CLASS OF 3×3 SEMILINEAR HYPERBOLIC EQUATIONS

Zhang Ping* and Qiu Qingjiu

(Department of Mathematics, Nanjing University, Nanjing 210093, China) (Received Dec 20, 1996; revised Apr. 4, 1998)

Abstract In this paper, we prove the global existence of oscillation waves for a class of 3 × 3 semilinear hyperbolic equations by applying the Young measures and two-scale Young measures which are associated with the solution sequence of the system.

Key Words Young measures; geometric optics; 3-web curvatures.

Classification 35C20, 35L60.

1. Introduction of slave over an llow as some some

Recently, rapid progress has been made on the rigorous justification of weakly nonlinear geometric optics [1–6]. In [1], J.L. Joly et al proved that: if the matrics A(t,x) =diag $(\lambda_1(t,x), \lambda_2(t,x), \dots, \lambda_N(t,x))$ with $\lambda_1(t,x) < \dots < \lambda_N(t,x)$, for $(t,x) \in \mathbb{R}^+ \times \mathbb{R}$, the Cauchy problem of the following system:

$$\begin{cases} (\partial_t + A(t, x)\partial_x)u^{\varepsilon} = f(t, x, u^{\varepsilon}) \\ u_k^{\varepsilon}(t, x) \mid_{t=0} = H_k\left(x, \frac{\varphi_k(0, x)}{\varepsilon}\right) + o(1) & \text{in } L^{\infty}[y_-, y_+] \ k = 1, \dots, N \end{cases}$$

has a solution $u^{\varepsilon}(t,x)$, and some T independent of ε , such that the geometric approximation $u^{\varepsilon}(t,x) = \sum_{k=1}^{N} \mathcal{U}_k \left(t, x, \frac{\varphi_k(t,x)}{\varepsilon}, \frac{1}{\varepsilon} \right) + o(1)$ is valid in $L^{\infty}(\Omega_T)$, where $\Omega_T = \Omega_0 \cap \{t \leq T\}$, $\Omega_0 = \{(t,x) \in \mathcal{R}^+ \times \mathcal{R} \mid 0 \leq t \leq T_1, \gamma_N(t,0,y_-) \leq x \leq \gamma_1(t,0,y_+)\}$, and $(t,\gamma_i(t,0,y))$ is the integral curve of $\partial_t + \lambda_i(t,x)\partial_x$ which issues from (0,y), $\varphi_k(t,x)$ is the solution of the following eikonal equations

$$\begin{cases} (\partial_t + \lambda_k(t, x) \partial_x) \varphi_k(t, x) = 0 \\ \varphi_k(t, x) \mid_{t=0} = \varphi_k(0, x) \end{cases}$$
 (1)

under the assumptions that the phase functions $\{\varphi_k(t,x)\}$ satisfy the closedness and transversality properties.

^{*}Present in Institute of Mathematics, Academia Sinica, Beijing 100080, China.

In this paper, we will study the global existence of oscillation waves for the following 3×3 semilinear equations:

$$\begin{cases}
X_i(t, x)u_i^{\varepsilon}(t, x) = f_i(t, x, u^{\varepsilon}), & (t, x) \in \mathbb{R}^+ \times \mathbb{R} \\
u_i^{\varepsilon}(t, x) \mid_{t=0} = \mathcal{U}_i^0\left(x, \frac{\varphi_i(x)}{\varepsilon}\right)
\end{cases}$$
(2)

where $X_i(t,x) = \partial_t + \lambda_i(t,x)\partial_x$, $u^{\varepsilon} = (u_1^{\varepsilon}, u_2^{\varepsilon}, u_3^{\varepsilon})$, $f(t,x,u^{\varepsilon}) = (f_1(t,x,u^{\varepsilon}), f_2(t,x,u^{\varepsilon}), f_3(t,x,u^{\varepsilon}))$ which is a continuous function from $[0,\infty) \times \mathcal{R} \times \mathcal{R}^3$, with f(t,x,0) = 0, and there is a constant K such that

$$\forall (t, x, u, v) \in \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^3, |f(t, x, u) - f(t, x, v)| \le K|u - v|$$
 (3)

 $\lambda_i(t,x)$ and its first derivatives are uniformly bounded, $\mathcal{U}_i^0(x,\theta_i), \partial_{\theta_i}\mathcal{U}_i^0(x,\theta_i) \in L^2(\mathcal{R} \times \mathcal{T})$), and $\mathcal{T} = \frac{\mathcal{R}}{\mathcal{Z}}$. The difficulty lies in that: when the initial data $u_0^{\varepsilon}(x)$ are as those in (2), we can not apply the techniques of oscillatory integration which are used by J.L. Joly et al in [1]. But if the curvatures of 3-web of $(X_1, X_2, X_3), \mathcal{K}(t, x) \neq 0$, a.e. on $\mathcal{R}^+ \times \mathcal{R}$, we can apply the trilinear compensated compactness in [2], and Young measures as well as two-scale Young measures to overcome this difficulty. As for the definition of the curvatures of 3-web, please consult [2] for more details.

Theorem 1 Let $\{X_i\}_{1 \leq i \leq 3}$ be the three pairwise independent smooth vector fields such that the curvatures of the associated 3-web $K(t,x) \neq 0$, a.e. on $\mathbb{R}^+ \times \mathbb{R}$, and arbitrary three phase functions $\varphi_i^0(x)$ with $(\varphi_i)'(x) \neq 0$ a.e. on \mathbb{R} . Then (2) has a unique solution $u^{\varepsilon}(t,x) \in C([0,\infty), L^2(\mathbb{R}))$, and

$$u_i^\varepsilon(t,x) = \mathcal{U}_i\bigg(x,\frac{\varphi_i(t,x)}{\varepsilon}\bigg) + O(1) \text{ in } C([0,\infty),L^p(\mathcal{R})), \ 1 \le p < 2, \ i = 1,2,3 \qquad (4)$$

where $U_i(t, x, \theta)$ (i = 1, 2, 3) are solutions of the following modulation equations:

$$\begin{cases} X_i \mathcal{U}_i(t, x, \theta_i) = E f_i(t, x, \theta_i) \\ \mathcal{U}_i(t, x, \theta_i) \mid_{t=0} = \mathcal{U}_i^0(x, \theta_i), \quad i = 1, 2, 3 \end{cases}$$

$$(5)$$

with $Ef_1(t, x, \theta_1) = \int_0^1 f_1(t, x, \mathcal{U}_1(t, x, \theta_1), \mathcal{U}_2(t, x, \theta_2), \mathcal{U}_3(t, x, \theta_3)) d\theta_2 d\theta_3$, similar definitions for $Ef_i(t, x, \theta_i)$, i = 2, 3. Mocover, $\mathcal{U}_i(t, x, \theta_i)$, $\partial_{\theta_i}\mathcal{U}_i(t, x, \theta_i) \in C([0, \infty), L^2(\mathcal{R}))$. And $\varphi_i(t, x)$, i = 1, 2, 3, are the solutions of the eikonal equations of (1).

Remark 1. We may prove the corresponding Theorem 1 for special $N \times N$ systems, such as the example given in [2]. But, when the curvatures of 3-web of (X_1, X_2, X_3) vanish on a set which is not of null Lebesgue measure, we can not get the same conclusion by the methods given in this paper.

Remark 2 Note that our results globally hold on time, while in [1], the asymptotic expansions are valid only locally in time, moreover, our expansions haven't the scale, $\frac{1}{\varepsilon}$, and with no restriction on the phase functions $\varphi_i(t, x)$.