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Abstract In this paper, we prove the global existence of oscillation waves for a
class of 3 x 3 semilinear hyperbolic equations by applying the Young measures and two-
scale Young measures which are associated with the solution segquence of the system.
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1. Introduction

Recently, rapid progress has been made on the rigorous justification of weakly non-
linear geometric optics [1-6], In [1], J.L. Joly et al proved that: if the matrics A(t,z) =
diag (M (2, 3), Aot 2). - An(E, z)) with Ay (t,2) < - < An(t @), for (t,2) € RT x R,
the Cauchy problem of the following system:

(8 + Aft, )0 )u® = flt, z,u°)
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uf(t, z) |e=0= Hi (-’Ih ) +oll) in L®¥y_,wlk=1,-- N

has a solution u®(¢,z), and some T independent of £, such that the geometric approx-

I ;
imation u®(t,z) = ZH*? (t}:m i"pk“"i},i) + o(1) is valid in L*({I7), where lp =
k=1

£ £
Qn{t<T) Q={tz)eR*xR|0<t<T,yw(t0,y-) £z £nld0,y4)}, and
(t,7(t,0, %)) is the integral curve of &, + A;(t, z)8; which issues from (0,y), wi(i, ) is
the solution of the following eikonal equations

{ (B + A (t, z)Bn)er(t, @) = 0

(1)
wr(t, ) |i=o= wi(0, )

under the assumptions that the phase functions {¢¢(t,z)} satisfy the closedness and
transversality properties.
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In this paper, we will study the global existence of oscillation waves for the fallowing
3 = 3 semilinear equations:

Xit,z)ub(t.z) = fi{t,z.uf), (Fa)eRTxR

uf (£, 2) [e=0= U} (T M)

£

where Xi(t,2) = & + M(t, )8, uf = (vf, 65, uf), flt,z.0f) = ( fi(t. z,u), falt, . u®),
falt, z,u%)) which is a continuous function from [0,0c) x R x B3, with f(¢,x,0) =0,
and there is a constant K such that

Witz u,0) € RT X R x R3xR3, |f(t,z,u) — f(t,z.v)| < Kl - v (3)

Aiit,m) and its first derivatives are uniformly bounded, U (z,8;), p. L2 (z,65) € L3R =
Th, and T = % The difficulty lies in that: when the initial data uj(x) are as those
in (2), we can not apply the techniques of oscillatory integration which are used by
1.L. Jaly et al in [1]. But if the curvatures of 3-web of (X7, Ko, X3), Kit,z) 5 0. ae.
on R* x R, we can apply the trilinear compensated compactness in 2], and Young
measures as well as two-scale Young measures to overcome this difficulty. As for the
definition of the curvatures of 3-web, please consult [2] for more details.

Theorem 1 Let {X;}1<i<q be the three pairwise independent smooth vector flelds
sueh that the curvatures of the essociated F-web K(f,z) # 0, a.e. on Rt xR, and
arbitrary three phase functions wl(z) with (w:)'(z) # 0 e.e. on R. Then (2) has a
unique solution u(t, ) € C([0, 00), LAY, and

wi(t,2) = U (= M) +0(1) in C((0,00), IP(R)), 1<p<2 i=123 (4

where U;(t,x,0) (1 = 1,2,3) are solutions of the follouing modulation equalions

Nt (4, x,0y) = B filtir0;) (5)
B
Ui(t, T,8;) |t=0= Uz, 0;), =123

1
with _Efl{f:,ﬂ:.lﬁ'ljl = f _f1|:$:,:I;,Erxfllzt,iﬂ,_ﬂi_]l_.-f.dr-gl:t..I,Eg}iefg[t,ﬂhﬁgﬂdﬁgdﬁg, similar defi-
0

nitions for Efi(t,z,8;), 1 = 2, 3. Moeover, Uj(t, z,8;), O, Us(t, T, 8;) € C[[0, 0], LEH(RY).
And @it ), i = 1,2,3, are the solutions of the etkonal equations of (1}.

Remark 1 . We may prove the corresponding Theorem 1 for special N = N
systems, such as the example given in [2]. But, when the curvatures of 3-web of
(X, X5, X3) vanish on a set which is not of null Lebesgue measure, we can not get the
sane conclusion by the methods given in this paper.

Remark 2 Note that our results globally hold on time, while in [1], the asymptotic
expansions are valid only locally in time, moreover, our expansions haven't the scale,

1 i o R
=, and with no restriction on the phase functions wilt, z).
c




