Some Results on the Stability of Non-classical Shock Waves

H. Freistühler

(RWTH Aachen, Institut für Mathematik, 52056 Aachen, Germany)

Dedicated to Professor Ding Xiaxi on the occasion of his 70th birthday

(Received Nov. 24, 1997)

Abstract Part 1 of this paper establishes the infinite-time stability of a class of over-compressive viscous shock waves; the equations studied here are a mathematical analogue of those of magnetohydrodynamics. Part 2 communicates a rather general short-time stability result for undercompressive shock waves in several space dimensions; technically, this is an easy extension of Majda's corresponding result for Laxian shock waves.

Key Words Conservation laws, shock waves, stability, overcompressive, undercompressive.

Classification 35L, 35K, 76W.

1. Infinite-time Stability of Non-classical Viscous Shock Waves

A traveling viscous shock wave solution

$$u^*(x,t) = \phi^*(x - st), \quad \phi^*(\pm \infty) = u^{\pm}$$
 (1)

of a "viscous" system of n conservation laws

$$u_t + (f(u))_x = (B(u)u_x)_x \tag{2}$$

is called stable for infinite time if with some appropriate norm $\|\cdot\|$ and some $\delta > 0$, the following holds for any perturbation $\overline{u}_0 : \mathbf{R} \to \mathbf{R}^n$: If $\|\overline{u}_0\| < \delta$, then the solution u of (2) with data

$$u(x,0) = \phi^*(x) + \overline{u}_0(x), \quad x \in \mathbf{R}$$
(3)

exists for all times t > 0 and converges in the sense

$$\lim_{t \to \infty} \sup_{x \in \mathbf{R}} |u(x, t) - \phi(x - st)| = 0 \tag{4}$$

to another viscous shock wave of profile ϕ with the same end states $\phi(\pm\infty) = u^{\pm}$. For classical shock waves, stability in this sense has been proved by Goodman, Matsumura and Nishihara, Liu, Szepessy and Xin in [1–4] under various assumptions; certain non-classical shock waves were shown to be stable by Liu and co-authors in [5–7]. The purpose of this paper consists in establishing an infinite-time stability result of certain non-classical viscous shock waves in the "cylindrical model" introduced by the author in [8]. This model (see also [9]) is given by the equations

$$y_t + (zy)_x = \mu y_{xx}$$

$$z_t + \frac{1}{2}(|y|^2 + z^2)_x = \zeta z_{xx}$$
(5)

where $x \in \mathbb{R}$, $t \in [0, \infty)$, $y(x, t) \in \mathbb{R}^{n-1}$ $(n \ge 3)$, $z(x, t) \in \mathbb{R}$, and $\mu, \zeta > 0$. We abbreviate (5) as (2), with $u \equiv (y, z)$ and $B \equiv \operatorname{diag}(\mu, \dots, \mu, \zeta) \in \mathbb{R}^{n \times n}$. The inviscid part of (5) is hyperbolic, with characteristic speeds

$$\lambda_{3/1}(u) = z \pm |y|, \quad \lambda_2(u) = z$$
 (6)

We consider the maximally overcompressive case, i.e., shock waves which satisfy

$$\lambda_1(u^-) > s > \lambda_3(u^+) \tag{7}$$

A solution $\phi: \mathbf{R} \to \mathbf{R}^n$ of the boundary value problem

$$B\phi' = f \circ \phi - s\phi - q, \quad \phi(\pm \infty) = u^{\pm}$$
(8)

with

$$q = f(u^{-}) - su^{-} = f(u^{+}) - su^{+}$$
(9)

will be called a profile for the pair (u^-, u^+) . We write $q = (q_1, q_2), q_1 \in \mathbf{R}^{n-1}$, and, w. l. o. g., fix from now on

$$s = 0$$
 and $q_2 > 0$ (10)

Lemma 1 If $q_1 \in \mathbb{R}^{n-1}$ is sufficiently small, then there exists (i) a unique pair (u^-, u^+) with (7), (9), and (ii) a unique profile ϕ_0^* for (u^-, u^+) with and $\phi_0^*(0) = 0$.

Proof (i) The equation f(u) - su = q reads

$$zy = q_1$$

$$\frac{1}{2}(|y|^2 + z^2) = q_2$$
(11)

If $q_1 = 0$, then its solution set consists of the two points

$$u^{\pm} = (0, \mp (2q_2)^{1/2})$$