THE GLOBAL SOLUTION AND ASYMPTOTIC BEHAVIORS FOR ONE CLASS OF SYSTEM OF NONLINEAR EVOLUTION EQUATIONS

Guo Boling

(Inst. of Applied Phys. and Computational Math., Beijing 100088, China)
Yang Linge

(Foshan University, Foshan 528000, China) (Received Oct. 13, 1995; revised Feb. 22, 1996)

Abstract The existence of global solution of initial-value problem for one class of system of nonlinear evolution equation is proved, we also study the asymptotic behavior and "blow up" of the solution.

Key Words Global solutions; evolution equations; asymptotic behaviors.

Classification 35Q.

1. Introduction and Main Results

The aim of this paper is to study the existence of global solution to the initial-value problem for the following nonlinear evolution equations

$$i\psi_t + \Delta\psi + \alpha\theta\psi + \beta|\psi|^{2p}\psi = 0, \quad x \in \mathbf{R}^n, t > 0$$
 (1)

$$-\Delta\theta + a^2\theta = |\psi|^2 \tag{2}$$

$$\psi(x,0) = \psi_0(x), \qquad x \in \mathbf{R}^n$$
(3)

where α and β are real constants, $\psi(x,t)$ is an unknown complex function, $\theta(x,t)$ is an unknown real function. $n \geq 2$. We also study the long time behavior and "blow up" of the solutions.

In the interaction of laser-plasma, the system of Zakharov equation plays an important role (See [1] [2] [3]) when the electromagnetic wave propagates in a plasma. The problem of stationary waveguide solutions arising due to thermal nonlinearities has been discussed. A thermal self focusing mechanism is quite clear. The system of equations has been proposed and studied from physics in [2].

To simplify the notation in this paper, we shall denote by $\int u(x)dx$ the integration $\int_{\mathbb{R}^n} u(x)dx$, by $\|\cdot\|_p$ the norm $\|\cdot\|_{L^p(\mathbb{R}^n)}$ by $\|\cdot\|_{m,p}$ the norm $\|\cdot\|_{W^{m,p}(\mathbb{R}^n)}$, and by C or E all the positive constants that depend only on the size of the initial data and, if necessary, on the constant T.

Our main results are as follows

Theorem 1 Suppose that (i) $\psi_0 \in H^m(\mathbb{R}^n)$, n = 2, 3 for some integer $m \ge 2$, and (ii) $\beta < 0, 1 < p < 2$ for n = 3, 1 for <math>n = 2. Then the problem (1)–(3) has the solution $\psi(x, t)$, $\theta(x, t)$ satisfying

$$\partial_t^r \partial_x^s \psi(x,t) \in L^{\infty}(0,T;L^2(\mathbf{R}^2))$$

where $2r + s \leq m$,

$$\partial_t^{r_1} \partial_x^{s_1} \theta(x,t) \in L^{\infty}(0,T;L^2(\mathbf{R}^n))$$

where $2r_1 + \max\{0, s_1 - 2\} \le m$, for any T > 0.

Theorem 2 Suppose that $\psi_0(x) \in H^1(\mathbb{R}^n) \cap L^{2p+1}(\mathbb{R}^n) \cap L^4(\mathbb{R}^n)$, $n \geq 4$, if one of the following conditions is satisfied:

(1) $\alpha < 0$, $\beta \le 0$,

(1)
$$\alpha < 0$$
, $\beta \le 0$,
(2) $\alpha < 0$, $\beta > 0$, $0 or $p = \frac{2}{n}$, $\|\psi_0\|_2 < \beta^{-\frac{n}{4}} \|\varphi\|_2$,$

(3) $\alpha > 0$, $\beta < 0$, n = 2, 3,

(4) $\alpha > 0$, $\beta > 0$, n = 2, 3, $0 or <math>p = \frac{2}{n}$, $\|\psi_0\|_2 < \beta^{-\frac{n}{4}} \|\varphi\|_2$, where φ is the ground state solution of the following equation

$$\Delta \varphi - \frac{2}{n}\varphi + \varphi^{\frac{4}{n}+1} = 0$$

then the problem (1)-(3) has the solution $\psi(x,t)$, $\theta(x,t)$ satisfying

$$\psi(x,t), \theta(x,t) \in L^{\infty}(0,T;H^{1}\mathbf{R}^{n}))$$

for any T > 0.

Theorem 3 Suppose that

(1)
$$\alpha < 0, \ \beta \le 0, \ p \ge \frac{2}{n}, \ n \ge 4,$$

 $(2) \|x\psi_0(x)\|_2 < \infty, \|\psi_0(x)\|_2 < \infty.$

Then for the solution $\psi(x,t), \theta(x,t)$ of the problem (1)-(3) we have

$$\|\psi(\cdot,t)\|_q \leq Ct^{n(\frac{1}{q}-\frac{1}{2})}, \quad t>1$$

where $2 < q \le \frac{2n}{n-2}$,

$$\|\theta(\cdot,t)\|_q \le Ct^{-n(1-\frac{1}{q})}, \qquad 1 \le q \le \frac{n}{n-2}, \quad n \ge 4$$