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Abstract The existence of global solution of initial-value problem for one class of
system of noplinear evolution equation is proved, we also study the asymptotic behavior
and “blow up” of the solution. '
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1. Introduction and Main Results

The aim of this paper is to study the existence of global solution to the initial-value
problem for the following nonlinear evolution equations

W+ A+ oy + BlY[PY =0, ze R t>0 (1)
—Af + a%0 = |yh|? (2)
Y(z,0) = yo(z), z € R™ (3)

where & and 3 are real constants, (s, t) is an unknown complex function, #(z, t) is an
unknown real function. n > 2. We also study the long time behavior and “blow up"’ of
the solutions. : '

In the interaction of laser-plasma, the system of Zakharov equation plays an im-
portant role (See [1] (2] [3]) when the electromagnetic wave propagates in a plasma.
The problem of stationary waveguide solutions arising due to thermal nonlinearities
has been discussed. A thermal self focusing mechanism is quite clear. The system of
‘equations has been proposed and studied from physics in [2].
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To simplify the notation in this paper, we shall denote by f ulx)dz the integration

[ u(@)ds, by |l the norm || [zs(em) BY I llmp the norm |- o, and by C
or E all the positive constants that depend only on the size of the initial data and, if
necessary, on the constant T'.

Our main results are as follows

Theorem 1 Suppose that (i) o € H™(R™), n = 2,3 for some integer m 2 2,
and (i) f<0,l<p<2forn=3,1<p<ooforn=2 Then the problem (1)-(3)
has the solution ¥(z, 1), 8(z,t) satisfying

8r a2 (z,t) € L=(0,T; L*(R?))

where 2r + 8 < m,
81851 8(z, t) € L=(0,T; L*(R™))

where 2r; + max{0,s, — 2} <m, for any T > 0.

Theorem 2 Suppose that ¥y(z) € H'(R™) N LT (R") N L*(R"), n > 4, if one
of the following conditions is satisfied:
(a<0 80,
@) a<0,5>0,0<p< 2 orp=", ol < 5%l
B)ea>0,74<0,n=23,
@a>0,5>0,n=230<p<>orp=—, lala <5 el
where @ is the ground state solution of the following equation

T
A = +rT =0
then the problem (1)—(3) has the solution 1(z,t), 8(z,1) satisfying
¥(z,t),8(z,t) € L*(0,T; H'R™))

for any T > 0.
Theorem 3 Suppose that

)
(1) a<0,8<0,p2>n24

(2) llztpo(z)ll2 < o2, Io(@)llz < oo.
Then for the solution v(z,t),0(z,t) of the problem (1)-(3) we have

96 Bl < G2, t>1

2n
N L
whereﬁ{qd_n_ﬂ,

1166, Dll, < 003, 1<g<—— n>4



