EXISTENCE AND NONEXISTENCE OF INTERFACES OF WEAK SOLUTIONS FOR NONLINEAR DEGENERATE PARABOLIC SYSTEMS

Yuan Hongjun

(Department of Mathematics & Department of Physics, Jilin University, Changchun 130023, China)

(Received May 20, 1994; revised Oct. 20, 1994)

Abstract The existence and nonexistence of interfaces of weak solutions for nonlinear degenerate parabolic systems

$$\frac{\partial u_i}{\partial t} - \operatorname{div} (|\nabla u|^{p-2} \nabla u_i) = 0, \quad i = 1, 2, \dots, m$$

with p > 1 are studied in this paper.

Key Words Nonlinear degenerate parabolic systems; weak solutions; interfaces. Classification 35K65.

1. Introduction

In this paper we consider the parabolic system

$$\frac{\partial u_i}{\partial t} - \operatorname{div}\left(|\nabla u|^{p-2}\nabla u_i\right) = 0, \quad i = 1, 2, \dots, m$$
(1.1)

in Q with p > 1, where $u_i = u_i(x, t)$, $\nabla = \operatorname{grad}_x$, x varies in \mathbb{R}^N and $Q = \mathbb{R}^N \times (0, +\infty)$.

The parabolic system (1.1) appears in models describing fluids with nonlinear viscosity (see [1]—[3]). It is a nonlinear system, which is degenerate if p > 2 or singular if 1 , since the modulus of ellipticity degenerates <math>(p > 2) or blows up (1at points where $\nabla u = 0$.

Let the initial condition be

$$u_i(x,0) = u_{0i}(x), \quad i = 1, 2, \dots, m$$
 (1.2)

for $x \in \mathbb{R}^N$, and

$$u_{0i} \in C_0^1(\mathbb{R}^N), \quad i = 1, 2, \cdots, m$$
 (1.3)

supp
$$u_{0i} \subset B_{R_0}, \quad i = 1, 2, \cdots, m$$
 (1.4)

for some $R_0 > 0$, where $B_{R_0} = \{x \in \mathbb{R}^N : |x| < R_0\}$.

Definition 1.1 A vector function $u = (u_1, u_2, \dots, u_m)$: $Q \to R^m$ is said to be a weak solution of the Cauchy problem (1.1)—(1.2), if for any T > 0

$$u_i \in L^{\infty}(Q_T) \text{ and } |\nabla u_i| \in L^p(Q_T); \quad i = 1, 2, \dots, m$$
 (1.5)

and u satisfies the integral identity

$$\int_{\mathbb{R}^N} u_i g_i(x,T) dx + \iint_{Q_T} (-u_i g_{it} + |\nabla u|^{p-2} \nabla u_i \nabla g_i) dx dt = \int_{\mathbb{R}^N} u_{0i}(x) g_i(x,0) dx,$$

$$i = 1, 2, \dots, m$$

for all vector functions $g = (g_1, g_2, \dots, g_m)$ satisfying $g_i \in C(0, T; C_0^1(\mathbb{R}^N))$ $(i = 1, 2, \dots, m)$, where $Q_T = \mathbb{R}^N \times (0, T)$.

In the case of one equation (m = 1)

$$\frac{\partial u}{\partial t} = \operatorname{div}(|\nabla u|^{p-2}\nabla u), \quad p > 1 \tag{1.6}$$

many papers have been devoted to the problem of existence, uniqueness, regularity of solutions, cf. [4]—[8]. In particular, the regularity of interfaces of the weak solutions has been obtained in [9].

In the case of many equations (m > 1), E. Di Benedetto and A. Friedman first have proved the continuity of the gradient of the weak solutions and then have obtained the existence and uniqueness of the Cauchy problem (1.1)—(1.2) in [1]. Further, M. Wiegner has studied the Hölder continuity of the gradient of the weak solutions in [10]. Our interest here is to treat the existence and nonexistence of interfaces of the weak solutions of the Cauchy problem (1.1)—(1.2).

Our main results are the following theorems.

Theorem 1.1 Assume that p > 2 and let $u = (u_1, u_2, \dots, u_m)$ be a weak solution of the Cauchy problem (1.1)—(1.2). Then the weak solution u has the interface, i.e., the set

$$\{x \in R^N : |u|(x,t) > 0\}$$

is a bounded subset in \mathbb{R}^N for every t > 0, provided that (1.4) holds, where $|\cdot|$ is the norm in \mathbb{R}^m .

Theorem 1.2 Assume that $1 . Then there exists <math>u_0 \not\equiv 0$ which satisfies (1.3) and (1.4) such that the weak solution u(x,t) of the Cauchy problem (1.1)—(1.2) has no interfaces, i.e., the set

$${x \in R^N : |u|(x, t^*) > 0}$$

is unbounded in \mathbb{R}^N for some $t^* \in (0, +\infty)$.

As a direct implication of Theorem 1.1 we have

Proposition 1.1 The nonlinear degenerate parabolic system (1.1) has the finite velocity of the propagation of perturbations under p > 2.