DECAY OF SOLUTION OF A PARABOLIC EQUATION IN 2-SPACE DIMENSIONS

Guo Boling and Zhang Linghai

(Institute of Applied Physics and Computational Mathematics, P.O. Box: 8009, Beijing, China)

(Received May 14, 1993; revised Sept. 3, 1993)

Abstract We present a simple method for verifying the uniform L^1 bound and establish sharp rates of L^2 decay of the global solution to the initial value problem for a 2-dimensional parabolic equation.

Key Words Decay estimates; 2D parabolic equation. Classification 35Q20.

1. Introduction

Newton-Boussinesq equations are of the form

$$\Delta\Psi_t + J(\Delta\Psi, \Psi) = \Delta^2\Psi - \alpha\theta_x \tag{1}$$

$$\theta_t + J(\theta, \Psi) = \beta \Delta \theta \tag{2}$$

which describe the famous Benard flow. In these last equations, Ψ is flow function, $\Delta\Psi$ is vortex, $\left(\frac{\partial\Psi}{\partial y}, -\frac{\partial\Psi}{\partial x}\right)$ is velocity vector, θ is the temperature, $J(\theta, \Psi) = \frac{\partial\theta}{\partial x}\frac{\partial\Psi}{\partial y} - \frac{\partial\Psi}{\partial y}\frac{\partial\Psi}{\partial x}$, $\alpha>0, \beta>0$ are constants.

The global existence of the generalized and classical solutions have been established. Spectral method and nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations have been discussed [1–2]. Universal attractors for the Benard problem, existence and physical bounds on their fractal dimension have also been investigated [3].

We note that if we put $\Phi = \Delta \Psi$, and neglect the effect of the temperature in (1), we get

$$\Phi_t + J(\Phi, \Psi) = \Delta\Phi \tag{3}$$

We are interested in the long time behavior of the global solution to the initial value problem for the following parabolic equation

$$\theta_t + J(\theta, \Psi) = \beta \Delta \theta, \ \beta > 0$$
 (4)

$$\theta(x, y, 0) = \theta_0(x, y) \tag{5}$$

where $\theta(x, y, t)$, $\Psi(x, y, t)$ are known scalar functions of the real variables $-\infty < x$, $y < \infty$, $0 \le t < \infty$; $\beta > 0$ is a constant.

In this paper, we want to establish sharp L^2 decay of the global solution to problem (1-2), with initial data $\theta_0(x) \in L^1 \cap L^2$. The decay results follow from the *a priori* L^1, L^2 integral estimates and the Fourier transform. The standard argument relies on a technique that involves the splitting of the phase space into two time-dependent domains. For this information, please refer to [4-7].

There has been considerable literature on decay of solutions to the initial value problems for nonlinear evolution equations. Schonbek studied decay of solutions to parabolic conservation laws

$$U_t + \sum_{k=1}^n \frac{\partial}{\partial x_k} f_k(U) = \varepsilon \Delta U, \quad U(x,0) = U_0(x)$$
 (6)

She established that if $U_0(x) \in L^1 \cap H^2$, then

$$\int_{R^n} |U|^2 dx \le C(1+t)^{-n/2}$$

Moreover, under the assumption

$$\left|\frac{d}{dU}f_k(U)\right| \le C|U|^p, \ p \ge 1 + \frac{4}{n}, \ |U| \le 1$$

or

$$|f_k(U)| \le C(U)^q, \ q \ge 2\left(1 + \frac{1}{n}\right), \ |U| \le 1$$

she established the L^{∞} optimal decay estimate

$$||U(t)||_{\infty} \le C(1+t)^{-n/2}$$

Readers who are interested in this problem can find other similar works on solutions to nonlinear evolution equations in our references.

Denote by
$$Q_t = \{(x, y, s) : -\infty < x, y < \infty, 0 \le s \le t\}$$
, where $0 \le t < \infty$.

For simplicity, we will denote by C any positive constant which depends only on the norms of the initial data θ_0 , and the positive constant β , but never depends on $t \geq 0$. Moreover, we regard

$$\begin{split} \|U(t)\| &= \|U(t)\|_{L^2(R^2)}, \quad \|U(t)\|_{\infty} = \|U(t)\|_{L^{\infty}(R^2)} \\ \|U(t)\|_m &= \|U(t)\|_{H^m(R^2)}, \quad \|U_0\| = \|U_0\|_{L^2(R^2)}, \quad \|U_0\|_m = \|U_0\|_{H^m(R^2)} \end{split}$$

Suppose that $f(x,y) \in L^1(\mathbb{R}^2) \cap L^2(\mathbb{R}^2)$, define its Fourier transform as follows

$$F[f](\zeta,\eta) = \hat{f}(\zeta,\eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp[-ix\zeta - iy\eta] dx dy$$

As usual, the definition is extended by continuity to the space of tempered distributions.