EXISTENCE AND NONUNIQUENESS OF SOLUTIONS TO A ROBIN BOUNDARY PROBLEM FOR SEMILINEAR ELLIPTIC EQUATIONS *

Jiang Jie

(Institute of Mathematics, Jilin University, Changchun 130023, China) (Received May 13, 1992; revised May 21, 1995)

Abstract Sufficient conditions for existence and nonuniqueness of radially symmetric solutions to the Robin boundary problem of the form

$$\Delta u + a(||x||)|u|^{-p} = 0$$
 in $B \subset \mathbb{R}^N$
$$\frac{\partial u}{\partial \nu} + \lambda u = -\alpha$$
 on ∂B

are obtained.

Key Words Robin boundary problem; positive solution; negative solution; nonuniqueness.

Classification 35J25, 34B15.

1. Introduction

In this paper we consider the existence and nonuniqueness of radially symmetric solutions of the Robin boundary problem

$$\Delta u + a(||x||)|u|^{-p} = 0$$
 in $B \subset \mathbb{R}^N$ (1.1)

$$\frac{\partial u}{\partial \nu} + \lambda u = -\alpha \qquad \text{on } \partial B \qquad (1.2)$$

where B is an open unit ball centered at the origin and ∂B is its boundary, ||x|| is the Euclidean norm of x, p, λ and α are all positive constants, $N \geq 3$, ν is the outward unit normal on ∂B , and a(t) is a continuous function defined on [0,1] such that a(t) > 0 a.e. in [0,1].

Equation (1.1) arises in mathematical physics, and the existence and uniqueness of positive solutions to the Dirichlet problem for (1.1) have been investigated by several authors [1–5]. Moreover, most of the available literature on determining the existence of positive radially symmetric solutions to Equation (1.1) (or more general form), for examples [6–9] and their references, studied the case p < 0.

^{*}The project supported by National Natural Science Foundation of China.

The search for radially symmetric solutions of the problem (1.1), (1.2) leads to the following problem in ordinary differential equations:

$$y''(t) + \frac{N-1}{t}y'(t) + a(t)|y|^{-p} = 0, \quad 0 < t < 1$$
(1.3)

$$y'(0) = 0, \ y'(1) + \lambda y(1) = -\alpha$$
 (1.4)

which is the problem to be studied in this paper. Actually, we will prove that the problem (1.3), (1.4) has a positive solution and a negative solution under certain conditions.

2. Positive Solution

In this section we consider the existence of positive solutions to the problem (1.3), (1.4), namely

$$y''(t) + \frac{N-1}{t}y'(t) + a(t)y^{-p} = 0, \quad 0 < t < 1$$
 (2.1)

$$y'(0) = 0, \ y'(1) + \lambda y(1) = -\alpha$$
 (2.2)

Instead of solving (2.1), (2.2) directly, we consider the following boundary value problem

$$y''(t) + \frac{N-1}{t}y'(t) + a(t)y^{-p} = 0, \quad 0 < t < 1$$
 (2.1)

$$y'(0) = 0, \ y(1) = \beta \ge 0 \tag{2.3}$$

By a positive solution of (2.1), (2.3) we mean a function y(t) in $C[0,1] \cap C^1[0,1) \cap C^2(0,1)$ which satisfies (2.1) and (2.3), and is positive in the interval [0,1).

It is easy to see that the problem (2.1), (2.3) is equivalent to the following integral equation

$$y(t) = \beta + \int_0^1 G(t, s)a(s)[y(s)]^{-p} ds \text{ on } [0, 1]$$
 (2.4)

where

$$G(t,s) = \begin{cases} \frac{1}{N-2} (t^{2-N} - 1)s^{N-1} & \text{for } 0 \le s \le t \\ \frac{1}{N-2} (s^{2-N} - 1)s^{N-1} & \text{for } t \le s \le 1 \end{cases}$$

is positive in $(0,1) \times (0,1)$.

It follows from (2.4) that

$$y'(t) = -t^{1-N} \int_0^t s^{N-1} a(s) [y(s)]^{-p} ds \quad \text{on } (0,1]$$
 (2.5)

Moreover, for any subinterval $[a, b] \subset [0, 1]$, y(t) can be written as

$$y(t) = \int_{a}^{b} G^{ab}(t, s)a(s)[y(s)]^{-p}ds + E^{ab}(t)$$
 on $[a, b]$ (2.6)