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Abstract The initial value problem for a nonlinear evolution system with singular
integral differential terms is studied. By means of a priori estimates of the solutions
and Leray-Schauder’s fixed point theorem, we demonstrate the existence and uniqueness
theorems of the generalized and classical global solutions to the problem.
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1. Introduction

In this paper, we study the initial value problem (IVP) for the following nonlinear
evolution system with singular integral differential terms (NES with SIDT) [5-T]

U + JTJ'_._,:E;:H + [gl'a.d @{U:I]: -+ EEHUEE-r + {—l}dﬁHUEE:—I -I—THU
= Alz,t)U + g(=,1) : (1)
U(z,0) = Uo(z) (2)

in the unhounded domain Qr = {(z,f) : —co <z < 00, 0 St < T}, where H is the
Hilbert singular integral operator

1 o= [I(y,t)

HU(s,t) = —PV. dy (3)

—ma =&

In system (1), U(z,t) = (Ui(e,t),---,Un(z,t)) is a N-dimensional vector valued
unknown fanction of the two real variables —oo < z < co and ¢ > 0; ®(U) is a scalar
function of the vector variable U; “grad” denotes the gradient operator with respect to
the vector variable U; A(z,#) is a N x N matrix of functions a; (=, 8)(1 <i,j £ N),
g(z,t) is a N-dimensional vector valued function of functions g;(z,t)(1 €4 < N); o, f,
and « are real constants; p > 1, 1 < r,s < p are integers.

System (1) is a much generalized NES. In fact, if a = B = # = 0, then it is the
generalized Korteweg-de Vries (KdV) system of higher order [1]

Uy + U,aptr + [grad ()], = Az, t)U + g(2,1) (4)
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In order to study the IVP (2) for the NES with SIDT (1), we need to investigate
the IVP (2) for the corresponding NES with dissipative term

Up +(—1)P*t el 2p42 + Ugzpsr + [grad ®(U)] + «H U2
+(=1)*BHU 201 + 7HU = A(z, 1)U + g(=,t) (5)

where 0 < & < 1. The solution of problem (1,2) will be obtained by the limiting
procedure of approaching to zero of the dissipative coefficient & for the solution of
problem (5, 2).

If f(z) € L}(R) N L*(R), define its Fourier transform as follows:

FINQ = FQ) = [ f@)exp(=istids )

)

Let the LP(1 < p < oo) norm on R be denoted by ||U||re, and define the Sobolev
spaces H™ and HJ' by means of the norms

Wi = [5= [ @ +IPPIOQRG] ™)
Ol = 5 [ IePmioPag] ™ @

where m > 0.

For simplicity, we will denote by C' any positive constant appeared in our paper,
which depends only on the coefficients a, @, and 7, the norms of the initial function
Us(z), and the norms of A(z,t) and g(z,t). Furthermore, we regard

1T = 102y U (Elee = 1T ()l Loog Ry
1T ()l = 1Ty U E)m = U Ry
Now let us introduce some functional spaces.
B = L=(0,T; H{R)), B={U = (U1,---,Un)e R : U;€B, 1<i< N}
Z = L=(0,T; H**Y(R)) n L*(0,T; H***(R)) n H'(0, T; L*( R))
Z={U=(Uy, -, Un)e RN :U; € Z,1<i< N}
If U(z,t) € B (or Z), define its norm as follows:

1T, = sup U]
0<t<T

1% =

]
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