ON THE LOCAL REGULARITY OF SOLUTIONS FOR DOUBLE DEGENERATE NONLINEAR PARABOLIC EQUATIONS

 $(u^{q-1})_t$ =div $(|\nabla u|^{p-2}\nabla u)$ WHEN 1

Gu Liankun and Huang Qingbo
(Dept. of Math., Xiamen Univ., Xiamen 361005)

Dedicated to the 70th birthday of Professor Zhou Yulin
(Received March 5, 1992; revised June 1, 1992)

Abstract In this paper, we establish interior Hölder estimates of solutions for double degenerate nonlinear parabolic equations $(u^{q-1})_t = \text{div } (|\nabla u|^{p-2} \nabla u)$ when 1 .

Key Words Hölder continuity; double degenerate; nonlinear parabolic equations Classifications 35K55, 35K65

1. Introduction

In this paper, we are mainly concerned with local Hölder continuity of nonnegative weak solution for the following double degenerate parabolic equations

$$(u^{q-1})_t = \operatorname{div}(|\nabla u|^{p-2}\nabla u) \quad \text{in } Q_T \tag{1.1}$$

where $1 , <math>p \le q$, $Q_T = \Omega \times (0,T]$, Ω is an open set in $\mathbb{R}^N (N \ge 1)$, $\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_N}\right)$.

For p = 2, (1.1) may be considered as the porous media equations $v_t = \Delta(v^{\frac{1}{q-1}})$ with $v = u^{q-1}$. Hölder continuity of solutions for porous media equations was proven in past, see [1], [2], [6], [7].

When q = 2, (1.1) is evolutionary p-Laplace equation, Hölder estimates for its weak solution and gradients of solutions have recently been obtained, see [3]-[6].

For double degenerate equations (1.1), the existence and uniqueness theorem and other properties of solutions have recently been investigated by some works, see [10]–[12]. When $1 < q \le p$, p > 2, Hölder continuity of solutions of (1.1) has just been proven by the authors, see [8].

For a weak solution u (supersolution, subsolution) of (1.1), we mean that $u \ge 0$, $u \in L^p(0,T;W^{1,p}(\Omega)), v, v_t \in L^2(Q_T)$, where $v = u^{q-1}$, and u satisfies

$$\int_{t_1}^{t_2} \int_{\Omega} v_t \varphi dx dt = (\geq, \leq) \int_{t_1}^{t_2} \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi dx dt \qquad (1.2)$$

^{*} The project supported by National Natural Science Foundation of China.

for $0 \le t_1 < t_2 \le T$, $\varphi \in L^2(Q_T) \cap L^p(0, T; W_0^{1,p}(\Omega)), \varphi \ge 0$.

Under appropriate conditions, one can prove the local boundedness of weak solution for (1.1). Throughout this paper we assume $0 \le u \le M$.

Our main result is the following.

Theorem 1.1 Assume that u is a weak solution of (1.1) with $1 , <math>p \le q$, and $0 \le u \le M$. Then for any $\varepsilon \in (0,1)$, there exist constants β , C > 0 dependent only on p, q, N, M, ε , $0 < \beta < 1$, such that

$$|u(x_1,t_1)-u(x_2,t_2)| \le C(|x_1-x_2|+|t_1-t_2|^{1/p})^{\beta}$$

$$for \ all \ (x_1,t), \ (x_2,t_2) \in \Omega_{\epsilon} \times (\epsilon,T-\epsilon), \ \Omega_{\epsilon} = \Big\{x \in \Omega: |x| < \frac{1}{\epsilon}, d(x,\partial\Omega) > \epsilon \Big\}.$$

2. Preliminary

In this section, we will give several Lemmas used later. Set

$$K_R(x_0) = \{x \in \mathbb{R}^N : |x^i - x_0^i| \le R, \ 1 \le i \le N\}$$

 $Q(R, \rho; z_0) = K_R(x_0) \times (t_0 - \rho, t_0], z_0 = (x_0, t_0)$

Assume $Q(R, \rho; z_0) \subset Q_T$.

Lemma 2.1 If u is a supersolution of (1.1), then

$$\sup_{t_{0}-\rho < t \leq t_{0}} \int_{K_{R}(x_{0})} \zeta^{p} \Big[\int_{u}^{k} s^{q-2} (k-s)^{+} ds \Big] dx + \iint_{Q(R,\rho;z_{0})} \zeta^{p} |\nabla (k-u)^{+}|^{p} dx dt \\
\leq C \iint_{Q(R,\rho;z_{0})} \Big\{ |\nabla \zeta|^{p} (k-u)^{+p} + \zeta^{p-1} |\zeta_{t}| \Big[\int_{u}^{k} s^{q-2} (k-s)^{+} ds \Big] \Big\} dx dt \quad (2.1)$$

If u is a subsolution of (1.1), then

$$\sup_{t_{0}-\rho < t \leq t_{0}} \int_{K_{R}(x_{0})} \zeta^{p} \Big[\int_{k}^{u} s^{q-2}(s-k)^{+} ds \Big] dx + \iint_{Q(R,\rho;z_{0})} \zeta^{p} |\nabla(u-k)^{+}|^{p} dx dt$$

$$\leq C \iint_{Q(R,\rho;z_{0})} \Big\{ |\nabla \zeta|^{p} (u-k)^{+p} + \zeta^{p-1} |\zeta_{t}| \Big[\int_{k}^{u} s^{q-2}(s-k)^{+} ds \Big] \Big\} dx dt \quad (2.2)$$

In (2.1) and (2.2), k > 0, constant c depends only on p, q. $\zeta \ge 0$, $\zeta \in C^1(Q(R, \rho; z_0))$, $\zeta|_{\partial_p Q(R, \rho; z_0)} = 0$.

Proof In (1.2), by taking $\varphi = \zeta^{p}(k-u)^{+}$, we easily obtain (2.1). Similarly, (2.2) can be proven.

Lemma 2.2 For $1 , <math>q \ge p$, there exist C_1 , C_2 dependent only on q, p such that for $u \ge 0$

$$C_1 k^{q-2} (k-u)^{+2} \le \int_u^k s^{q-2} (k-s)^+ ds \le C_2 k^{q-p} (k-u)^{+p}$$
 (2.3)