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Abstract In this paper, we establish interior Holder estimates of solutions for
double degenerate nonlinear parabolic cquations [w9=1), = div {|?1-.-.|4"_3?u:| when 1 <
p<2,py.
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1. Introduction

In this paper, we are mainly concerned with local Hélder continuity of nonnegative
wealk solution for the following double degenerate parabolic equations

(w?™) = div (|Vu|'"?Vu) in Qr (1.1)

where 1 < p < 2, p < q, Qpr = 02 x (0,T], 2 is an open set in RN{N 2 1), Wu =
(SH 5-::,)

i e |

For p = 2, {1.1) may be considered as the porous media equations v, = Alve-T1)
with v = 49!, Hélder continuity of solutions for porous media equations was proven
in past, see [1], [2], [6], [T].

When ¢ = 2, (1.1) is evolutionary p-Laplace equation, Hélder estimates for its weak
solution and gradients of solutions have recently been obtained, see [3]-[6].

For double degenerate equations (1.1), the existence and uniqueness theorem and
other properties of solutions have recently been investigated by some works, see [10]-

[12]. When 1 < ¢ < p, p > 2, Hélder continuity of solutions of (1.1} has just been
proven by the authors, see [§]

For a weak solution u {supersolution, subsclution) of (1.1}, we mean that u > 0,
u € LP(0, T; W'P(Q)), v,v; € L}(Qr), where v = w91, and u satisfies
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f [tr,(pcizr:ﬁt= (E,ﬁf f|?1£|3’_2‘?uvcpdﬂ:d~t (1.2)
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for 0 <t <t T, 9 € LHQT) N IP(0,T; Wy *(Q)), 0 2 0.

Under appropriate conditions, one can prove the local boundedness of weak sclution
for {1.1). Throughout this paper we assume 0 < u < M.

Our main result is the following,.

Theorem 1.1 Assume that u 15 a weak solulion uf (11 withl < p<2 pLq,
and 0 < u < M. Then for any £ € (0,1), there exist constants 3, C > 0 dependent
only onp, q, N, M, e, 0< 8 <1, such that

luf{zy,t1) — w(ze, t2)| < C(|21 — 22| + |81 — t2]"/7)"
for all (21,1), (22,t2) € Qe % (6,T =€), Qe = {2 € Q: |2 £ ﬂ[f_z 99) > e}.

2. Preliminary
In this section, we will give several Lemimnas used later. Set
Kn(m)={z € R¥ :|2* - «}| < R, 1 £i < N}
Q(R:ﬁiﬁuj = I":R'[Eﬁ]' & [tu e P:ILJ]:EIJ = {Iintﬂ}

Assume Q(R, p;z0) C @7.
Lemma 2.1 If u i a supersolution of (1.1), then

k
SUP f (;F[f s17 %k — 5}"'&.’3]&1 + [/’ ¢*|V(k — u)t|Pdedt
tp—p<tstn < K plonl 1 C{.pzg )
k
<cff {IVeP(E —wy + Ml [ [ 77k - s)*ds] Jdode (2.1)
Gz u -

If u is a subsolution of (1.1}, then

S f f”[/ $173a = k) da]dm+f] CP|V (w— k)Y |Pdedt
to—p<t<ty S K (za) k {R.pizo)

<c [ {19y ol e - Ryt et (22)

In(2.1) and (2.2), k > 0, constant ¢ depends only onp,q. ( 20, ( € CI[Q(EP;:U]],
gl-ﬂ;.f,_’l:j"i'.,lu;znj - D-

Proof In (12), by taking = (*(k —u)*, we easily obtain (2.1). Similarly, (2.2)
can be proven,

Lemma 2.2 Forl < p< 2, g > p, there exist (1, (F2 dependent only on g, p such
that for u > 0

k
CokT=2(k - uyt? < f sk — s)Yds < CoRTP(k — u)*? (2.3)
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