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Abstract A system of first order equations of mixed type, which may be reduced
to a general second order equation of mixed type, s considered. Uniqueness of solution
to the generalized Tricomi problem is proved by the method of auxiliary function.
Existence of H' strong solution 18 based on a characteristic problem and is proved by
the Fredholm’s alternative properties.

Key Words System of mixed type; generalized Tricomi problem; auxiliary fune-
tion; Fredholm’s alternative properties.

Classification 35M05

1. Introduction

[n domain D C R? consider a system of first order equations

{Cum—ﬂuy-—ﬂy+{ru+,ﬂv=f

(1)
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where the coefficient determinant A = B? — AC is just the discreminant of type of
the system of equations, the system (1) is elliptic when A < 0, and is hyperbolic
when A > 0. If A < 0 in a subdomain Py of Pand A >0in another subdomain
D_(=D\D4)of D, then the system (1)in D is of mixed type. In hyperbolic domain D_
two families of characteristics I'y and T'_ are defined by equations Adm—-{ﬂ—-«,ﬁ}dy =
and Adz — (B + V' )dy = 0 respectively. For this system of equations of mixed type
how pose the problem, this is the problem considered here.

Suppose that functions AB.C e Biaid e . f,g € H. For (1) we consider a
kind of special case:

Bo4+8,=0 in D (2)

Now we take a function p(z,y) € C'(D), which is vanished on the boundary 7.
Multiplying the first and second equations in (1) by pz and py respectively, integrating
the results over D and then making integrations of parts (in weak sense) respectively,
we have

ff [ Cttge — Bigy = Vay + (@ + Calia — Boty + fvz + ctau t fo _ .)dzdy = 0
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Adding together and in consideration of the assumption (2) we get

ffﬂ{ﬁ'un EBHIH + "dmm.r + ["1 s Gﬁ - B':r.r + ﬂB + 5(’1]”:’7
+(v+ Ay - B — PA— & B Ju,,
o + 7y — 07 + ab)u— (fo + gy — Bg + 6f)pdedy =0 (3)

In consideration of the arbitrariness of function p, we obtan a general second order
equation with respect to w

Cttpg — 2Bugy + Aty + Eug + Duy + Fu=0G (4)

where

E=a+C;— By+ 8B+ 46C, D=y+A,— B —BA—- 6B
F=ogtvy—Fr+ad G=fetoy—PBg+éf

(5)

Since the discreminant A = B? — AC' < 0in D4 and > 0 in D_, hence the equation
(4)inDP(=P;UD_)isa equation of mixed type. For this equation we know that we
may consider the generalized Tricomi problem

u=0 onTouT (6)

or Tricomi problem
u=0 onTguUly {T:]

where I'g is the outer boundary of Dy, which is connected with the degenerating curve
A = 0 at points 4 and B; T and I'_ are two families of characteristic curves, issuing
from the corresponding points A and B respectively; I, is an arbitrary pilecewise
smooth curve, issuing from the point A and lying inside the characteristic triangle, and
defined by the following equation:

M : dz+pzy)dy=0 p2 (—B + VA)/Aon T (8)

2. Uniqueness of Solution

Assume that the coefficients in (4) satisfy the conditions

Hy: DjA=ely), F/A=¥(@) ©

Then, we may make transformation

u = we™ JHWIW (10)




