C^{1,α}-PARTIAL REGULARITY OF NONLINEAR PARABOLIC SYSTEMS*

Tan Zhong

(Dept. of Math., Jilin Univ., Changchun, 130023) (Received December 14, 1989)

Abstract We prove $C^{1,\alpha}$ -partial regularity of weak solution of nonlinear parabolic systems

$$u_t^i - D_\alpha A_i^\alpha(x, t, u, Du) = B_i(x, t, u, Du), \quad i = 1, \dots, N$$

under the main assumption that A_i^{α} and B_i satisfy the natural growth condition.

Key Words Nonlinear parabolic system; partial regularity; natural growth condition

Classifications 35B65, 35K55

1. Introduction

In this paper we will extend some of the partial regularity results for nonlinear elliptic systems to parabolic case. Actually, we intend to show that the method developed in [1], [3] can be also used to study nonlinear parabolic systems.

Let Ω be an open set in R^n . T>0 and $Q=\Omega\times [0,T]$, and let z=(x,t), where $x\in\Omega,\,0< t\leq T$, denote a point in Q and $\partial_p Q$ the parabolic boundary of Q. Let $u(z)=(u^1(z),\cdots,u^N(z))$ be a vector valued function defined in Q. Denote by Du the gradient of u, i.e., $Du=\{D_\alpha u^i\}_{i=1,\cdots,N;\alpha=1,\cdots,n}$.

Consider the nonlinear parabolic systems of the following type

$$u_t^i - D_\alpha A_i^\alpha(z, u, Du) = B_i(z, u, Du), \quad i = 1, \dots, N$$
 (1.1)

We suppose that A_i^{α} and B_i satisfy the natural growth condition:

$$A_i^{\alpha}(z, u, p)p_{\alpha}^i \ge \lambda |p|^2 - f^2, \quad f \in L^{\sigma}(Q)$$
 (1.2)

$$|A_i^{\alpha}(z, u, p)| \le C(|p| + f_i^{\alpha}), \quad f_i^{\alpha} \in L^{\sigma}(Q)$$
 (1.3)

$$|B_i(z, u, p)| \le a(|p|^2 + f_0), \quad f_0 \in L^{\tau}(Q)$$
 (1.4)

or $|B_i(z,u,p)| \leq C(|p|^{2-\delta} + f_i), \quad f_i \in L^{ au}(Q)$

 $[|]B_i(z, u, p)| \le C(|p|^{z-z} + f_i), \quad f_i \in L'(Q) \tag{1.4}$

^{*} The subject supported by the National Natural Science Foundation of China

where $\lambda > 0$, $a \ge 0$ and δ are constants with $0 < \delta < \frac{n}{n+2}$. We denote

$$V_N(Q) = L^2(0, T; H^1(\Omega, R^N)) \cap L^\infty(Q, R^N)$$

 $W(Q) = L^2(0, T; H^1_0(\Omega, R^N)) \cap H^1(0, T; L^2(Q, R^N))$

By a weak solution of (1.1) under the natural growth condition (1.2)-(1.4) (or (1.2), (1.3), (1.4)') we mean a vector valued function $u \in V_N(Q)$ such that

$$\int_{Q} [A_i^{\alpha}(z, u, Du)D_{\alpha}\varphi^i - u^i\varphi_t^i]dz = \int_{Q} B_i(z, u, Du)\varphi^i dz \qquad (1.1)'$$

for all $\varphi \in W(Q) \cap L^{\infty}(Q, \mathbb{R}^{N})$ with $\varphi(x, 0) = 0$, $\varphi(x, T) = 0$, $\forall x \in \Omega$. For $z_0 = (x_0, t_0) \in Q$, denote

$$B_R = B(x_0, R) = \{x \in R^n, |x - x_0| < R\}$$

 $I_R = I(t_0, R) = \{t \in R, t_0 - R^2 < t < t_0\}$
 $Q_R = Q(z_0, R) = B(x_0, R) \times I(t_0, R)$

We prove the main theorem:

Theorem 1.1 Let $u \in V_N(Q)$ be a weak solution of system (1.1). Suppose that A_i^{α} and B_i satisfy

$$\begin{aligned} & (\mathrm{H}_1) \mid A_i^{\alpha}(z,u,p) \mid \leq C(|p|+1) \\ & (\mathrm{H}_2) \; \frac{\partial A_i^{\alpha}(z,u,p)}{\partial p_{\beta}^j} \xi_{\alpha}^i \xi_{\beta}^j \geq \lambda |\xi|^2, \quad \lambda > 0, \quad \forall \xi \in R^{nN} \end{aligned}$$

(H₃) $A_i^{\alpha}(z, u, p)(i = 1, \dots, N; \alpha = 1, \dots, n)$ are of class C^1 with bounded continuous $\left|\frac{\partial A_i^{\alpha}}{\partial p_{\alpha}^j}\right| \leq L_{\text{monow and }((x)^{N_{B_1}},\dots,(x)^{N_{B_1}})}$

$$\left|\frac{\partial A_i^{\alpha}}{\partial p_{\beta}^j}\right| \le L$$

 (H_4) $(1+|p|)^{-1}A_i^{\alpha}(z,u,p)$ are Hölder continuous in (z,u) uniformly with respect to p, i.e.,

$$|A_i^{\alpha}(z,u,p) - A_i^{\alpha}(y,v,p)| \leq c(1+|p|)\eta(|u|,|z-y|^2 + |u-v|^2)$$

where $\eta(s_1,s_2) \leq K(s_1)\min(s_2^{\gamma/2},L)$ for some γ , $0 < \gamma < 1$ and L > 0, K(t) is an increasing function,

$$(\mathrm{H}_5) \; |B_i(z,u,p)| \leq a(|p|^2+b), \; 2aM < \lambda, \; \sup_{Q} |u| = M$$
 or $|B_i(z,u,p)| \leq C(|p|^{2-\delta}+b)$

Then the first derivatives $D_{\alpha}u^i$ of u are Hölder continuous in an open set $Q_0 \subset Q$ with meas $(Q \setminus Q_0) = 0$.

In proving the theorem stated above, we need the following Lemma which can be found in [5].