THE DIRICHLET PROBLEMS FOR A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS RELATIVE TO THE EIGENVALUES OF THE HESSIAN 1)

Wang Lianju

(Dept. of Math., Beijing Normal University, Beijing 100875)

(Received July 15, 1989; revised Apr. 16, 1991)

Abstract In this paper we discuss the Dirichlet problems for a class of fully nonlinear elliptic equations

$$F(D^2u) = \psi(x,u)(\psi(x,u,\nabla u))$$
 in Ω
$$u = \varphi(x)$$
 on $\partial\Omega$

where F is represented by a symmetric function $f(\lambda_1, \dots, \lambda_n)$ of the eigenvalues $(\lambda_1, \dots, \lambda_n)$ of the Hessian D^2u . This result extends the works of Caffarelli L., Nirenberg L., Spruck L. [2] to more general cases.

Key Words The eigenvalues of the Hessian matrix; admissible; a priori estimates for the C^2 norm.

Classification 35J65.

1. The Main Results

In this paper we extend the results of [2] to more general cases. We will discuss the Dirichlet problem in a bounded domain Ω in \mathbb{R}^n with smooth boundary $\partial\Omega$:

$$F(D^2u) = \psi(x, u)$$
 in Ω
$$u = \varphi(x)$$
 on $\partial\Omega$ (1)

and the Dirichlet problem in a bounded domain Ω in \mathbb{R}^n with smooth strictly convex boundary $\partial\Omega$:

$$F(D^2u) = \psi(x, u, \nabla u)$$
 in Ω
 $u = \varphi(x)$ on $\partial\Omega$ (2)

where $\varphi \in C^{\infty}(\partial\Omega)$ and the function F is of a very special nature. It is represented by a smooth symmetric function $f(\lambda_1, \dots, \lambda_n)$ of the eigenvalues $\lambda = (\lambda_1, \dots, \lambda_n)$ of the

¹⁾ The project supported by National Natural Science Foundation of China.

Hessian matrix $D^2u = \{u_{ij}\}$, which we denote by $\lambda(u_{ij})$. The function f is assumed to satisfy

$$f_i = f_{\lambda_i} = \frac{\partial f}{\partial \lambda_i} > 0 \text{ for all } i$$
 (3)

furthermore,

$$f$$
 is a concave function (4)

defined in an open convex cone $\Gamma \neq \mathbb{R}^n$ with vertex at the origin and containing the positive cone Γ^+ : $\{\lambda \in \mathbb{R}^n | \text{ each component } \lambda_i > 0\}$. Γ is also supposed to be symmetric in the λ_i .

We assume that for every C>0 and every compact set K in Γ there is a number R=R(C,K) such that

$$f(\lambda_1, \dots, \lambda_n + R) \ge C$$
 for all $\lambda \in K$ (5)

$$f(R\lambda) \ge C$$
 for all $\lambda \in K$ (6)

Definition 1 A function $u \in C^2(\overline{\Omega})$ with $u = \varphi$ on $\partial\Omega$ is called admissible if at every $x \in \overline{\Omega}$, $\lambda(u_{ij})(x) \in \Gamma$.

Definition 2 Γ is said to be Type 1 if the positive λ_i axes belong to $\partial \Gamma$; otherwise it is said to be Type 2.

For Equation (1), we assume that

$$\psi(x,z) \in C^{\infty}(\overline{\Omega} \times \mathbf{R}), \ \psi(x,z) > 0$$
and $\psi_z \ge 0$ (7)

There exists an admissible subsolution $\underline{u} \in C^5(\overline{\Omega})$ such that

$$F(D^2\underline{u}) \ge \psi(x,\underline{u})$$
 in Ω
 $\underline{u} = \varphi(x)$ on $\partial\Omega$ (8)

Set

$$\min_{\overline{\Omega}} \psi(x, \underline{u}(x)) = \psi_0 > 0$$

We assume that for some $\overline{\psi}_0 < \psi_0$,

$$\overline{\lim_{\lambda \to \lambda_0}} f(\lambda) \le \overline{\psi}_0 \text{ for every } \lambda_0 \in \partial \Gamma$$
(9)

Furthermore we have the following condition: for some constant $C_0 > 0$

$$\sum f_{\lambda_i} \lambda_i \ge C_0 \text{ whenever } f(\lambda) \ge \frac{\overline{\psi}_0 + \psi_0}{2}$$
(10)