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Abstract We deal with O interior estimates for solutions of fully nonlinear
equation F{D%u, Du,z) = f{z) with the bounded gradient Du and a bounded f(x).
Based on these estimates we obtain the existence of strong solutions of the obstacle
problem for fully nonlinear elliptic equations under natural structure conditions,
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1. Introduction

In this note, we deal with €1 interior estimates for solutions of fully nonlinear
elliptic equations
F(D*u, Du,z) = f(z) (1.1)

with the bounded gradient Du and a bounded f(z). In [1], L.A.Caffarelli obtains C1

interior estimates for solutions of

F(D uz} fiz)

with F(r,z) continuous with respect to z. Obviously the result cannot be used in the
above case. If D f(z) is of L™({}, ™), we can get C1'* estimate for solutions with some
a € (0,1) after differentiating the equation and using Holder estimates for Du, but it
does not work for only bounded f(z). For quasilinear elliptic equation

’j[ﬂ'u, }Disu = f(2)

the similar results as shown in this note have been obtained (ef Theorem 13.6 in [3])
because certain combinations of Du satisfy the equations of divergence form and the
De Giorgi-Nash-Moser estimates can be used. The method is not adaptable to fully
nonlinear equations.
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Our method is based on the modification of the approximation lemma given by
L.A Caffarelli {Lemma 13 in [1]), but some differences can be found in the proofs. In
addition we also show how to use the mollification approach to get C''* estimates
instead of the iteration approach as shown in [1].

Let §! be an open bounded domain in R" and S"(S}) be the space consisting of
(positive definite) symmetric matrices. Assume that F(r,p,z)in I' = 8" x R" x @
satisfies the following structure conditions:

Ms| € F(r+s,p,2)— F(r,p,z) < Als|, Vse S} (1.2)
F(0,p,z) =0 (1.3)
|F(r,pe +y)— F(rp,2)l < A8(y)1+|r| + ), Ve+ye (1.4)

(1+ [pDIF(rp+ q,2) — F(r,p,2)| < Aplql(X + ||+ Ipl), Yge R™ (1.5

for (#,p,2) € ', where A, A, u are positive constants and Bly) > 0in R™.
Theorem 1.1 Suppose 0 < & < 1. Assume that solution w to the equation

F(D*w,Dw,0) =0 in Bg
satisfy the a priori estimale
lwllgrapy,) € CoR™ ) |w|p=(ay (1.6)
For0<a<a,letuc C'=(£1) be a viscosity solution of
F(D*u, Du,z) = f(z) inf (1.7)

with || Du||pe(q) € M™. Assume that F(r,p,z) satisfies (1.2)-(1.5) in I’ and

2

sup | R-o" f |f(2)"dz}" < A, (1.8)
g £ Brlza)nil
B i<l :
1
RYy= f "(z)dz ;™ — 0 as B — 0 1.9
w(B)={ f £(e)dz}" = (19)

Then there exists C' depending on n, %, p, M*, Fy, w(:), a, & and Cy, such that

[Dulg aq < ClllDull= gy + Fo + 1] (1.10)

where the semi-norm [ul}, , is referred to [3] (p. 61).
As an application we obtain the W2 strong solutions of the obstacle problem for

fully nonlinear elliptic equations under natural structure conditions, which improves
the results in [2] and [4].
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