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Abstract We generalize the well-known Eells-Sampson’s theorem on the global
existence and convergence for the heat flow of harmonic maps. The assumption that
the curvature of the target manifold N be nonpositive is replaced by the weaker one
requiring that the universal cover N admit a strictly convex function with quadratic
growth.
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1. Introduction

Let (M,g) and (N, k) be two compact Riemannian manifolds without boundary. It
will be convenient to embed (N, k) isometrically into some Euclidean space R so that
we may consider N as a submanifold of B¥ with the induced metric. Let

CHM,N) = {u=(u, - -,uf) e CYM,RE) : u(z) € N ¥z € M}
For any v € CY(M, N), the energy density of « is defined by
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where m = dim M. The energy of u is given by
E(u) = f d
() = [ e(w)i,

By definition, harmonic maps are critical points of the energy E{u) as a functional on
| C*(M,N). If u is harmonic then it satisfies the Euler-Lagrange equation
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where A(y) is the second fundamental form of N in R¥ at y € N. We call 7(u) the
tension field of wu.

J. Eells and J. H. Sampson (5] first introduced the method of heat flow in the study
of the existence problem for harmonic maps. This flow is a negative gradient flow for
the energy F(u), defined by the parabolic equation

Gu

= =7(u), u(0,2) = uo(e) (1)
It is shown in [5] that for uy € C*(M, N) (1.1) has a unique solution u € C°°((0,T) x
M,N)n C°%[0,T) x M,N), where T = T(up) € (0, ] is the maximal existence time
for the solution w. If T’ < oo, the solution must blow up in the sense that

lim || Vu||goragy = o0

If T = oo, we say that the solution exists globally. FEells and Sampson proved that
if the target manifold N has non-positive curvature then the solution is global and it
converges (in C*(M, N) for any k > 1) to a harmonic map as t — oo.

It is our aim in this note to present a generalization of the above stated theorem of
Eells-Sampson. Our result is as follows.

Theorem 1.1 Let (N,}) be the universal covering of (N,h). Suppose that N
admils a strictly conver function p € SZ{E? ) with guadratic growth, i.e. p satisfies

Vip > egh on N (1.2)
where ¢g > 0 is a constani, and

0< ply) € erdiz(y,50) +e2, YyewN (1.3)

where ¢1,¢2 > 0 are constants, yg € N and d;: 1s the distance on N. Then every solution
u of (1.1) is global and subconverges to some harmonic map as t — co. Moreover, we
have the following estimate

lu(t, Werarwy € C(E(uwn)), t21 - (1.4)

Remark 1.1 If the sectional curvature of N is nonpositive then it is known that
p= di;{-,yg] is strictly convex, hence (1.2) and (1.3) are satisfied. Consequently, Eells-
Sampson’s theorem follows from our Theorem 1.1. The quadratic growth condition
(1.3) seems to be a technical one. We doubt its necessity. It would be interesting if
one can remove this condition from the theorem. For the case where the initial map is
homotopic to a constant map, the condition (1.3) can actually be removed (cf. Remark
3.1). But, in such a case the solution u of (1.1) has to converge to a constant map.

Remark 1.2 The assumption of the existence of a strictly convex function on N
is already sufficient for the existence of a smooth minimizing harmonic map in each
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