A GENERALIZATION OF EELLS-SAMPSON'S THEOREM

Ding Weiyue¹

(Institute of Mathematics, Academia Sinica, Beijing 100080)

Lin Fanghua²

(Courant Institute, New York University, New York, U. S. A.) (Received Dec. 15, 1991)

Abstract We generalize the well-known Eells-Sampson's theorem on the global existence and convergence for the heat flow of harmonic maps. The assumption that the curvature of the target manifold N be nonpositive is replaced by the weaker one requiring that the universal cover \tilde{N} admit a strictly convex function with quadratic growth.

Key Words Harmonic maps; heat flow.

Classifications 58E20, 58G11.

1. Introduction

Let (M, g) and (N, h) be two compact Riemannian manifolds without boundary. It will be convenient to embed (N, h) isometrically into some Euclidean space \mathbb{R}^K so that we may consider N as a submanifold of \mathbb{R}^K with the induced metric. Let

$$C^1(M,N) = \{u = (u^1, \dots, u^K) \in C^1(M, \mathbb{R}^K) : u(x) \in N \ \forall x \in M\}$$

For any $u \in C^1(M, N)$, the energy density of u is defined by

$$e(u) = \frac{1}{2} |\nabla u|^2 = \frac{1}{2} \sum_{\alpha,\beta=1}^m \sum_{i=1}^K g^{\alpha,\beta} \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^i}{\partial x^\beta}$$

where $m = \dim M$. The energy of u is given by

$$E(u) = \int_{M} e(u) dv_g$$

By definition, harmonic maps are critical points of the energy E(u) as a functional on $C^1(M,N)$. If u is harmonic then it satisfies the Euler-Lagrange equation

$$\tau(u)^{i} \equiv \Delta u^{i} - \sum_{\alpha,\beta} \sum_{j,k} g^{\alpha,\beta} A^{i}_{j,k}(u) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

^{1.} The project supported partially by National Natural Science Foundation of China.

^{2.} The project supported partially by the NSF of U. S. A.

where A(y) is the second fundamental form of N in R^K at $y \in N$. We call $\tau(u)$ the tension field of u.

J. Eells and J. H. Sampson [5] first introduced the method of heat flow in the study of the existence problem for harmonic maps. This flow is a negative gradient flow for the energy E(u), defined by the parabolic equation

$$\frac{\partial u}{\partial t} = \tau(u), \quad u(0,x) = u_0(x) \tag{1.1}$$

It is shown in [5] that for $u_0 \in C^1(M, N)$ (1.1) has a unique solution $u \in C^{\infty}((0, T) \times M, N) \cap C^0([0, T) \times M, N)$, where $T = T(u_0) \in (0, \infty]$ is the maximal existence time for the solution u. If $T < \infty$, the solution must blow up in the sense that

$$\lim_{t\to T}\|\nabla u\|_{C^0(M)}=\infty$$

If $T=\infty$, we say that the solution exists globally. Eells and Sampson proved that if the target manifold N has non-positive curvature then the solution is global and it converges (in $C^k(M,N)$ for any $k\geq 1$) to a harmonic map as $t\to\infty$.

It is our aim in this note to present a generalization of the above stated theorem of Eells-Sampson. Our result is as follows.

Theorem 1.1 Let (\tilde{N}, \tilde{h}) be the universal covering of (N, h). Suppose that \tilde{N} admits a strictly convex function $\rho \in C^2(\tilde{N})$ with quadratic growth, i.e. ρ satisfies

$$abla^2
ho \ge c_0 \tilde{h} \ on \ \widetilde{N}$$
 (1.2)

where $c_0 > 0$ is a constant, and

$$0 \le \rho(y) \le c_1 d_{\widetilde{N}}^2(y, y_0) + c_2, \quad \forall y \in \widetilde{N}$$
 (1.3)

where $c_1, c_2 > 0$ are constants, $y_0 \in \widetilde{N}$ and $d_{\widetilde{N}}$ is the distance on \widetilde{N} . Then every solution u of (1.1) is global and subconverges to some harmonic map as $t \to \infty$. Moreover, we have the following estimate

$$||u(t,\cdot)||_{C^1(M,N)} \le C(E(u_0)), \quad t \ge 1$$
 (1.4)

Remark 1.1 If the sectional curvature of N is nonpositive then it is known that $\rho \equiv d_{\widetilde{N}}^2(\cdot, y_0)$ is strictly convex, hence (1.2) and (1.3) are satisfied. Consequently, Eells-Sampson's theorem follows from our Theorem 1.1. The quadratic growth condition (1.3) seems to be a technical one. We doubt its necessity. It would be interesting if one can remove this condition from the theorem. For the case where the initial map is homotopic to a constant map, the condition (1.3) can actually be removed (cf. Remark 3.1). But, in such a case the solution u of (1.1) has to converge to a constant map.

Remark 1.2 The assumption of the existence of a strictly convex function on \tilde{N} is already sufficient for the existence of a smooth minimizing harmonic map in each