A PRIORI ESTIMATES AND EXISTENCE OF POSITIVE SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS IN GENERAL FORM

Wang Xujia

(Dept. of Math., Zhejiang University) (Received June 29, 1989; revised Dec. 29, 1991)

Abstract In this paper we prove the existence of a positive solution to the following superlinear elliptic Dirichlet problem,

$$-\sum_{i,j=1}^{n} a_{ij}(x,u,Du)D_{ij}u = f(x,u,Du) \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$

where f satisfies certain growth conditions.

Key Words Elliptic equation; positive solution.

Classifications 35J20; 35J25.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with C^2 boundary, $n \geq 2$. In this paper we are concerned with the problem of finding a function u satisfying the elliptic boundary problem

$$\begin{cases}
Lu = -\sum_{i,j=1}^{n} a_{ij}(x, u, Du) D_{ij}u = f(x, u, Du) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1.1)

where L is a uniformly elliptic operator, i.e., there exist positive constants λ , Λ so that

$$\lambda |\eta|^2 \le a_{ij}(x, u, \xi) \eta_i \eta_j \le \Lambda |\eta|^2 \tag{1.2}$$

for all $\eta \in \mathbb{R}^n$, $(x, u, \xi) \in \Gamma = \Omega \times \mathbb{R} \times \mathbb{R}^n$.

For divergent elliptic equations, if it is the Euler equation of a differentiable functional, using the variational principle one can obtain two or more solutions, see [1, 9]. But in our situation the equation in (1.1) is not a Euler equation of some functional and the variational methods can't be applied.

We will use the a priori estimates combined with degree theory to prove the existence of a positive solution to (1.1). The main difficulty is to establish the a priori bound $||u||_{L^{\infty}}$ for solutions u of (1.1). Generally such estimate is not true, see [1],

[9]. But for positive solutions various estimates for $||u||_{L^{\infty}}$ have been obtained [2]-[4]. Recently Gu [8] proved such estimates for positive solutions of the problem

$$-\Delta u = f(x, u, Du) \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$
 (1.3)

where f satisfies the growth condition

$$\lim_{|u|+|\xi|\to\infty}f(x,u,\xi)/(|u|^{lpha}+|\xi|^{eta})=0$$
 uniformly for $x\in\Omega$

with $\alpha = (n+1)/(n-1)$, $\beta = (n+1)(n-2)/n(n-1)$ or $1 < \alpha = \beta < (n+1)/n$.

Here we use the "blow up" method to derive the a priori estimates for positive solutions of (1.1). Suppose there exist $a_{ij}^*(x)$, $f^*(x) \in C(\bar{\Omega})$ with $f^*(x) \geq \delta_0 > 0$ such that

$$\lim_{u\to\infty}a_{ij}(x,u,\xi)=a_{ij}^*(x) \text{ uniformly for } (x,\xi)\in\Omega\times \boldsymbol{R}^n$$

(H₂)
$$|f(x, u, \xi) - f^*(x)u^p| \le \mu(|u| + |\xi| + |u|^p + |\xi|^{2p/(p+1)})$$

where $p \in (1, (n+2)/(n-2)), \mu(t) \ge 0$ is a nondecreasing function satisfying

$$\overline{\lim}_{t\to 0}\mu(t)/t=\mu_0<\infty \tag{1.4}$$

$$\lim_{t \to \infty} \mu(t)/t = 0 \tag{1.5}$$

Assumption (H₂) implies by the Harnack inequality (see [7]) that, if $u \in W^{2,n}(\Omega)$ is a nonnegative solution of (1.1) and $u \neq 0$, then u > 0 in Ω . In the following we always suppose $f(x, u, \xi) = 0$ for $u \leq 0$.

In Section 2 of this paper we prove the a priori estimates for solutions of (1.1). In Section 3 we deal with the existence. For later applications we quote two results in [4].

Proposition 1 If $u \ge 0$ satisfies $\Delta u + u^p = 0$ in \mathbb{R}^n with $1 , then <math>u \equiv 0$.

Proposition 2 If $u \ge 0$ satisfies $\Delta u + u^p = 0$ in $\mathbb{R}^n \cap \{x_n > 0\}$ and u = 0 on $\{x_n = 0\}$ with $1 , then <math>u \equiv 0$.

2. A priori estimates

In order to apply the topological degree theory to problem (1.1), we have to establish the L^{∞} a priori estimates for solutions of the problem

$$\begin{cases}
-t\Delta u + (1-t)Lu = tu_+^p + (1-t)f(x, u, Du) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.1)_t

for all $t \in [0,1]$, where L is the elliptic operator introduced in (1.1).

Theorem 2.1 If $u \in W^{2,n}(\Omega)$ is a nonnegative solution of (2.1), then

$$\sup\{u(x); x \in \Omega\} < M \tag{2.2}$$

for some M independent of $t \in [0,1]$.