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Abstract In this paper, we consider the time dependent Stefan problem with
convection in the fluid phase governed by the Navier-Stokes equation and with adherence
of the fluid on the lateral boundaries. The existence of a weak solution is obtained via
the introduction of a temperature dependent penalty term in the fluid Aow equation,
together with the application of various compactness arguments,
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1. Introduction

J. R. Cannon, E. DiBenedetto and G. H. Knightly discussed the bidimensional
Stefan problem with convections in paper [1], the convection is governed by a linear
Stokes equation there. In this paper we consider the Stefan problem with nonlinear
convection, i.e., the convection is governed by a Navier-Stokes equation

av

"E — U&.V—I— {V v:ﬂ-’r + Vep = _ﬂ:ﬂ} in {11]

where (2 is a domain of liquid phase in Q7 = Q% (0,T], 2 ¢ R? is a bounded domain.
Let (3 = @\ denote a domain of solid phase, V = I?{m,tj denote the velocity of
liquid flow, u = u(z,t) denote the quantity determined by the temperature (see [1]],
where £ = (x4,22),t € [0,T]. Let Qt) = 0 x {t},t € [0,T].

As in [1], the problem reduces to {1.1)—(1.6)
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5 - AK(u)+V  Vou=0, (z,t) € Qp
—?Ifi’{u‘]-ﬁ = glz,t,u), (2,t) £ ST

] u(2,0) = ue), 2 € 0(0) (12)
u(z,t) = 0, (2,8) T
{[V.E(u)]t = [V . K(u)]"} V.8 = L&,, (z,t) e T

where 57 = |] 99(¢) is the lateral boundary of Q7 and T =T = |J T(t) is the
DEsT o<t<T

free boundary, while I'(t) determined by ¢(z,t) = 0. We set §; = (4,87 (i = 1 .2).
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1" satisfies conditions

V=0 onb (1.3)

V(e,0) = Volz) =€ 2:(0), divip(z) =0 (1.4)
divV = 0 (1.5)

Vie,t)=0 ae onfl : (1.6)

Briefly, if there is no additional description, the notations are similar to those de-
scribed in paper [1].

2. The Equations of the Weak Formulation

Let ¢ € W, (Qr) such that ¢(z,T) = 0. Then multiplying the first equation of
(1.2) by ¢ and performing integration by parts, we obtain (note: Vyud = (Vau)d)

f_/;;. { —B(u)ge + VoK (u) Vo9 + V- Veudldedt

= — [ gz, tuppds + [ Bluo)é(a, 0)dz (2.1)
St {2(0)
where (+) is the maximal monotone graph
& for s > ()
B(s)=+¢ [-L,0], fors=0 (2.2)

s — L, for s < 0

Since the graph B(-) is multivalued, 8(u(z,t)) has to be interpreted as a function
w(z,t) C Blu(z,1)), the inclusion being intended in the sense of the graphs. In order to
simplify the symbolism we will keep the symbol 5 (u(z,t)), bearing in mind the way it
has to be interpreted. Since ug # 0 except on T, B(ug(2)) is unambiguously a.e. defined
in £(0).

To obtain a weak formulation of (1.1), (1.3)-(1.6), consider a smooth, divergence
free vector value function 1 which is compactly supported in M {t) = &t = ¢}, for
all t € [0,T] and ¢(z,T) = 0. Take the “dot” product of (1.1) by 4 and integrate by
parts in ;. Routine calculations give

fﬂ { e 7ol 1,31 + HT;BT} : ?,1,!_;4— [I:' . "'?-"]T;' . 1,}'7— f{u]tﬂ}dmdt
2 f Tolz) (2, 0)dz (2.3)
fy {0)
where 0 = {(z,t) € Qr|u(z,t) > 0}.
Definition By a weak solution of (1.1)-(1.6), we mean a pair (u, V) such that
(1) V eVa(Qr), u € Va(QT)NC(Qr);
(2) V€ J5(@r) = L=(0,T5 J(Q) N L0, J1(2),
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