UNIQUENESS OF SOLUTION OF THE INITIAL VALUE PROBLEM FOR $u_t = \Delta u^m - u^p$

Zhao Junning

(Dept. of Math., Jilin University)

Du Zhongfu

(Jilin Electrification Institute) (Received July 24, 1989; revised Nov. 22, 1989)

Abstract The uniqueness of solution of the Cauchy problem

$$u_t = \Delta u^m - u^p, \qquad S_T = \mathbf{R}^n \times (0,T)$$
 $u(x,0) = \phi(x), \qquad x \in \mathbf{R}^n$

is obtained. Where $n \ge 1, m, p > 0, \phi(x) \in L^{\infty}(\mathbb{R}^n), \phi(x) \ge 0$. **Key Words** Uniqueness of solution; initial value problem. Classification 35K65

1. Introduction

In this paper we consider the Cauchy problem

$$u_t = \Delta u^m - u^p, \qquad S_T = \mathbb{R}^n \times (0, T) \tag{1.1}$$

$$u(x,0) = \phi(x), \qquad x \in \mathbb{R}^n$$
 (1.2)

where $n \ge 1, m, p > 0, \phi(x) \in L^{\infty}(\mathbb{R}^{n}), \phi(x) \ge 0.$

Equation (1.1) arises in many applications. We will not recall them here, since they can be found in most of papers, for example [1]. For the case of regular diffusion (m=1) and slow diffusion (m>1), it was shown in [2] that the problem (1.1), (1.2) has a unique continuous solution, when n=1. The object of this paper is to extend these results to the case when $m>0, p>0, n\geq 1$.

Let
$$B_R = \{x \in \mathbb{R}^n : |x| < R\}, \ \partial B_R = \{x \in \mathbb{R}^n : |x| = R\}.$$

Definition We say that a function $u: S_T \to R$ is a solution of (1.1), (1.2), if $u \in L^{\infty}(S_T)$, $u \geq 0$ and for almost all R > 0, $t \in (0,T)$ it satisfies the identity

$$\int_{B_R} u(x,t) \xi(x,t) - \int_{B_R} \phi \xi(x,0) = \int_0^t \int_{B_R} (u \xi_t + u^m \Delta \xi - u^p \xi) - \int_0^t \int_{\partial B_R} u^m (
abla \xi,
u)$$

where $\xi \in C^2(\bar{S}_T)$, $\xi = 0$ on $\partial B_R \times (0,T)$, ν denotes the outward pointing normal on ∂B_R .

Our results are as follows

Theorem 1. Let $\phi \in L^{\infty}(\mathbb{R}^n)$, $\phi \geq 0$. Assume that one of the following conditions holds

(1) $0 \left(1 - \frac{2}{n}\right)^+ p$

(2) $p \geq 1$, $m > \left(1 - \frac{2}{n}\right)^+$

where $(s)^+ = \max\{s,0\}$. Then (1.1), (1.2) has a unique solution.

Theorem 2. Let u1, u2 be the solutions of (1.1) with nonnegative initial value $\phi_1,\phi_2\in L^\infty(\mathbb{R}^n)$. And assume that the conditions of Theorem 1 hold. Then $\phi_1\leq\phi_2$ on \mathbb{R}^n implies $u_1 \leq u_2$ on S_T .

2. The Proof of Theorem

The proof of Theorem 1 We consider the approximate problem

$$u_t = \Delta u^m - u^p + \varepsilon^p$$
 in $B_{R(\varepsilon)} \times (0, T)$ (2.1)

$$u(x,t) = \varepsilon$$
 on $\partial B_{R(\varepsilon)} \times (0,T)$ (2.2)

$$u(x,0) = \phi_{\varepsilon}(x)$$
 in $B_{R(\varepsilon)}$ (2.3)

where

$$0 < \varepsilon < 1$$
, $R(\varepsilon) = \varepsilon^{-\frac{p}{n} + \varepsilon_0}$, $\frac{p-1}{n} < \varepsilon_0 < \frac{p}{n} - \frac{1}{2}(1-m)^+$ when $p \ge 1$

$$0 < \varepsilon_0 < \frac{p}{n} - \frac{1}{2}(p-m)^+$$
 when 0

 $\phi_{\epsilon} \in C^{\infty}(R^n)$ has the properties

$$(1) \ \phi_{\varepsilon} \geq \varepsilon, \ \int_{B_{R(\varepsilon)}} |\phi_{\varepsilon} - \phi| \to 0 \text{ as } \varepsilon \to 0^{+}$$

$$(2) \ \phi_{\varepsilon} = \varepsilon \quad \text{near } |x| = R(\varepsilon)$$

$$\phi_{arepsilon} = arepsilon$$
 near $|x| = R(arepsilon)$ with another independent of $\phi_{arepsilon} = arepsilon$ near $|x| = R(arepsilon)$ with a solution $|x| = R(arepsilon)$ and $|x| = R(areps$

Remark ϕ_{ε} can be chosen in the following fashion. Let $\phi_{\varepsilon} = (\phi + \varepsilon) * J_{h(\varepsilon)}$ where $J_h \in C^{\infty}(\mathbb{R}^n)$ is a mollifier with the properties $\mathrm{supp} J_h \subset \{x: |x| < h\}, \int_{\mathbb{R}^n} J_h = 1.$ Since $\varepsilon_0 > \frac{(p-1)^+}{n}$, we can choose $h(\varepsilon)$ such that

$$\phi_{m{arepsilon}} \geq arepsilon, \quad \Big\{ \int_{R(m{arepsilon})} |\phi * J_{h(m{arepsilon})} - \phi| + \int_{R(m{arepsilon})} arepsilon * J_{h(m{arepsilon})} \Big\} o 0 \quad ext{as} \quad arepsilon o 0^+$$

It is well known that (2.1)-(2.3) has a unique classical solution u_{ε} and $\varepsilon \leq u_{\varepsilon} \leq M$. Hence the uniform upper bound implies, by [3] and [4], that $\{u_{\varepsilon}\}$ is equicontinuous on